

Aerodynamics-1 VTU CBCS Question Paper Set 2018

Ultimate Guide to Score High In VTU Exams eBook ₹39/-

> Guide to Score High in ANY VTU EXAM eBOOK

> > Download Now

Importing Voter 1 - On reproblem rome group or a majorite line

GBCS Scheme

USN											15A	E42
-----	--	--	--	--	--	--	--	--	--	--	-----	-----

Fourth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Aerodynamics - I

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- Explain briefly Mach number regimes with relevant sketches of flow over an airfoil. (08 Marks)
 - b. Consider the velocity field given by $u = \frac{y}{(x^2 + y^2)}$ and $v = \frac{-x}{(x^2 + y^2)}$. Calculate the equation of the stream line passing through the point (0, 5) and also calculate the vorticity. (08 Marks)

OR

- 2 Define following with relevant expressions:
 - (i) Path line (ii) Stream line (iii) Angular velocity (iv) Circulation (08 Marks)
 - b. Derive the integral form of momentum equation, according to control volume approach. (08 Marks)

Module-2

Explain airfoil-section nomenclature and wing planform geometry with a neat sketch. 3

(08 Marks)

(08 Marks)

b. Obtain the expression for N' and A' in terms of τ , p and θ . Deduce C_n and C_a . (08 Marks)

OR

- a. Explain briefly the center of pressure and aerodynamic center.
 - b. Consider the NACA 23012 airfoil. At $\alpha=4^{\circ},\ C_{1}=0.55$ and $Cm_{C/4}=-0.005$. The zero-lift angle of attack is -1.1° . Also, at $\alpha = -4^{\circ}$, $Cm_{C/4} = -0.0125$. Calculate the location of the aerodynamic center for the NACA 23012 airfoil. (08 Marks)

Module-3

- Obtain an expression for the following for a lifting flow over cylinder:
 - (i) Stream function (\psi) (iii)

Pressure co-efficient.

- (ii) Location of stagnation points.
- b. Consider the lifting flow over a circular cylinder with a diameter of 0.5 m. The freestream velocity is 25 m/s and the maximum velocity on the surface of the cylinder is 75 m/s. The freestream conditions are those for a standard altitude of 3 km. Calculate the lift per unit span on the cylinder. (Assume $\rho = 0.90926 \text{ kg/m}^3$ at 3 km altitude, maximum velocity occurs at when $\theta = 90^{\circ}$)

OR

- Write short notes on the following: 6
 - (i) Kutta condition
 - (ii) Kelvin's circulation theorem. (08 Marks)
 - b. Using classical thin airfoil theory, obtain the expression $C_i = 2\pi\alpha$ for a symmetric airfoil. (08 Marks)

15AE42

Module-4

7 a. Obtain the expression for the velocity, induced by infinite and semi-infinite vortex element using the Biot-Savart law. (08 Marks)

b. Explain Downwash and induced drag.

(08 Marks)

OR

8 a. The circulation distribution over a finite wing is of elliptic form, $\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$,

where $\frac{b}{2}$ is the semi span of wing. Obtain the closed form of expression, the induced angle of attack and induced drag co-efficient. (08 Marks)

b. Consider a finite wing with an aspect ratio of 8 and taper ratio of 0.8. The airfoil section is thin and symmetric. Calculate the lift and induced drag co-efficient for the wing when it is at an angle of attack of 5°. Assume that $\delta = \tau = 0.055$. (08 Marks)

Module-5

9 a. Briefly explain simplified horse-shoe vortex model and formation flight. (08 Marks)

b. What are high lift devices? List them. Explain their effects on aerodynamic characteristic.

(08 Marks)

OR

10 a. What is swept wing? Bring out the aerodynamic characteristics of swept wing, with relevant graphs and sketches. (08 Marks)

b. Explain (i) Drag-Divergence Mach number. (ii) Transonic area rule. (08 Marks)

* * * *

GRGS Scheme

USN

15AE42

Fourth Semester B.E. Degree Examination, June/July 2017 Aerodynamics - I

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1

- Derive the differential form of energy equation through control volume approach. (08 Marks) 1
 - Consider the velocity field given by $u = \frac{y}{(x^2 + y^2)}$ and $v = \frac{x}{(x^2 + y^2)}$. Calculate the equation of the streamline passing through the point (0, 5) and calculate the circulation around a circular path of radius 5m. Assume that u and v are in units of meters per second. (08 Marks)

OR

a. Derive the differential form of momentum equation through control volume approach.

(08 Marks)

Derive an equation for vorticity ξ .

(08 Marks)

Module-2

- a. Derive an expression for the axial force coefficient (Ca) and normal force coefficient (Cn) of 3 an airfoil.
 - b. Consider an airfoil at 12° AoA. The normal and axial force coefficients are 1.2 and 0.03 respectively. Calculate the lift and drag coefficient.

OR

Define centre of pressure and aerodynamic centre. Derive $M'_{LE} = -\frac{C}{4}L' + M'_{C/4} = -X_{Cp}L'$

for centre of pressure with neat sketches showing force and moment system.

b. Consider two different points on the surface of an airplane wing flying at 80 m/s. The pressure coefficient and flow velocity at point 1 are -1.5 and 110 m/s respectively. The pressure coefficient at point 2 is -0.8. Assuming compressible flow, calculate the flow (08 Marks) velocity at point 2.

Module-3

- a. Briefly explain the following elementary flows with neat sketches and write Ψ and ϕ for each of them:
 - i) Uniform flows
 - ii) Source and sink flows
 - iii) Doublet flow

iv) Vortex flow

(12 Marks)

b. Consider the lifting flow over a circular cylinder. The lift coefficient is 5. Calculate the peak (04 Marks) (negative) pressure coefficient.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42-8 = 50, will be a

15AE42

OR

- a. Derive the expression $C_1 = 2\pi\alpha$, using the classical thin airfoil theory. (08 Marks)
 - b. Consider the lifting flow over a circular cylinder with a diameter of 0.5 m. the freestream velocity is 25 m/s, and the maximum velocity on the surface of the cylinder is 75 m/s. The freestream conditions are those for a standard altitude of 3 km. Calculate the lift per unit span on the cylinder.
 - c. Consider a thin flat plate at 5 deg angle of attack, calculate the :
 - i) Lift coefficient
 - ii) Moment coefficient about the LE
 - iii) Moment coefficient about the quarter chord point and
 - iv) Moment coefficient about the TE.

(04 Marks)

Module-4

- a. Derive an expression for lift coefficient and induced drag coefficient in terms of circulation strength $\Gamma(Y)$ for a finite using through Prandtl's classical lifting line theory.
 - b. Obtain the expression for the velocity induced by infinite vortex filament using the Biot-Savart law. (06 Marks)

OR

- a. Derive the expression for the induced angle of attack and induced drag coefficient using elliptical lift distribution. (10 Marks)
 - b. Discuss briefly the following:
 - i) Vortex filament
 - ii) Helmholtz's vortex theorem

(06 Marks)

Module-5

9 What are high lift devices? Discuss in detail about the high lift devices and explain their effects on airplane performance with a neat sketch. (16 Marks)

OR

10 a. Discuss the advantages and disadvantages of forward-swept wings.

(08 Marks)

- b. Write short notes on the following:
 - i) Formation of flight
 - ii) Influence of down wash on tail plane
 - iii) Ground effect

(08 Marks)