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First Semester B.E. Degree Examination, Dec.2017/Jan.‘2Q18

Engineering Mathematics —1

Time: 3 hrs. : .‘"Max. Marks: 100

Note: Answer any FIVE full questions, choosing one full question fi{b?ﬂ each module.

Module-1 RO
Find the n™ derivative of .cosx cos 2x . o {06 Marks)
. ‘ a G
Find the angle between thecurves = alogh, r= o (07 Marks)
logh
Find the radius of curvature of the curve r= a(l+cosG). (07 Marks)
OR

If y =acos(logx) + bsin(log x) . prove that X2y, F DXyt (n? +1)y, =0. (06 Marks)

. 2
. . e 1 1
With usual notations prove that the pedal equation in the form — = —12—+ -7(%;—) .
. p- r T
(07 Marks)

2
. . . as(a—-x .
Find the radius of curvature of the curve y2 = ——(————2 at the point (a, 0). (07 Marks)
X

Module-2
Find the Taylor’s series of log x in powers of (x — 1) upte fourth degree terms. (06 Marks)

3 3 -
If U=tan™ X1y , prove that X?E+ ygE =sin2U by using Euler’s theorem. (07 Marks)
X+y Ox oy S

- B(u, v, W) |
fU=x+3y>, V=4x'yz, W= 27° — Xy , evaluate G ﬁ at the point (1, -1, 0).
o(X,y,2)y )
(07 Marks)
OR
% ¢ ‘\‘
. o {at bt +c]
Evaluate {im|-———""1| - (06 Marks)
x-—)()K 3
Find the Maclaurin’s expansion of Jog(secx) upto x' terms. © -+ (07 Marks)
¥ 2 2 AR 2
. i 0 L
If z=f(X,y), where x =rcos0, y=rsin 0, prove that (QE + éz_ ::(—ﬁ) +—7(-a—2) .
, ox oy or @ X 00
o (07 Marks)
Module-3
A particle moves along the curve T= (' —4t)i+ (1> +4t) j+ (87 _3t"k. Find the velocity
and acceleration vectors at time t and their magnitudes at t = 2. (06 Marks)
ff=(x+y+ ])Ai~ +]’ —(x+ y)ﬁ , prove that feurlf=0. (07 Marks)
Prove that div(curl A)=0. (07 Marks)
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. OR
'»’Abparticle moves along the curve ¥ =2t + (¢’ —4t)j+(3t—5)lz. Find the components o
vé!ocity and acceleration along i-3j+2K att=2. (06 Marks
If :rg\x::a"@(x3y+ Y'z+2'x~x%y?z*), find div f and curl f. (07 Marks
Prove that ‘curl(grad ¢)=0 . (07 Marks
N Module-4
2a " 'X‘z

Evahiate J. —"rw,-:.—_:dx. v (06 Marks)

0 \/—Z—ax;-- X
Y L tanx — v e | .
Solve d—+ ytanx =y’secx . : (07 Marks)

X
Find the orthogonal trajectories of r" =a" cosnf . 'v (07 Marks)
OR
o : n/2

Find the reduction formula for 'jcos“xdx and hence evaluate J.cos“ xdx. (06 Marks)

. 0
dy+ YCOSX +siny+y -0 L
dx sinx+xcosy+x
A body originally at 80°C cools down to 60°C in 20 minutes in the surroundings of
temperature 40°C. Find the temperature of the body after 40 minutes from the original
instant. (07 Marks)

Solve (07 Marks)

‘Module-5
Find the rank of the matrix e

21 3 5
4 2 1 3
A= '
8 4 7 13
8§ 4 -3 - JJ
by reducing it to echelon form. ‘ (06 Marks)
Using the power niethod find the largest eigenvalue and the corresponding eigenvector of
6 ‘ __"‘»l 2 '
matrix A — -2°3 —1| taking (1, 1, )" as the initial eigenvector. Perform five iterations.
< \\2\ ( - 1 3
e (07 Marks)
Show;héﬁ:»t}}é transformation y, =x, +2X, +5x,, y, =2x, A, +1Ix,, Y, = —x, +2x, is
regular. Also, find the inverse transformation. (07 Marks)
R OR
,-;deiy@ the following system of equations by using Gauss-Jordan method:
XY +2=9,  x-2y+37-8, 2X+y-z=3 (06 Marks)
o -1 2
Diagnolize the matrix A :( 5 J ) (07 Marks)
Obtain the canonical form of 3x2 +5y? +32° —2yz + 22x —2Xy using orthogonal
transformation. (07 Marks)
¥ 3k ok ok

20f2
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USN 1SMATI11
First Semester B.E. Degree Examination, June/July 2016
Engineering Mathematics - |
Time: 3 hrs. Max. Marks: 80
Note: Answer any FIVE full questions,
choosing ONE full question from each module.
Module-1
1 Find the n™ derivative of y= e % cos’x. (06 Marks)
Find the angle of intersection between the curves r = a(l + sin 6) and r = a(1 — cos 0).

(05 Marks)

: ; : 3
Find the radius of curvature at the point (3—;—25] on the curve X° + y° = 3axy. (05 Marks)

OR

If y = sin (log(x* + 2x + 1)), prove that (x + 1)? yn2 + 20+ 1)(X + Dyge1 + (n* + 4)y, = 0.
(06 Marks)

Find the pedal equation for the curve r™ cos mf = a™. (05 Marks)

Find the radius of curvature of the curve x* + y* = 2 at the point (1, 1). (05 Marks)

Module-2
Expand sin x in powers of x —-723 upto 4™ degree terms using Taylor’s series. (05 Marks)
1/
2
Evaluate: Limit (tanxj/ \ (05 Marks)
x—0 X
2 2
If u=tan~' Retd prove that x 6_u - yg—u— = lsin 2u. (06 Marks)
X+y ox oy 2
OR
Expand log(1 + e*) using Maclaurin’s series upto i degree terms. (06 Marks)
0
It g=t 3(-,1,5 then prove that x@ +y ‘4 L.y (05 Marks)
y z X ox dy 0z
: : ; %, Y. Z
Ifx=rsin®cos¢,y=rsin0sin¢,z=rcos6, find J 0.0 : (05 Marks)
Module-3

A particle moves along the curve x = 215, y= - 4t, z = 3t — 5, where t is the time, find the

component of its velocity and acceleration in the direction of the vector i -~ 3j + 2k at t = 1.
(06 Marks)

-

Show that F = (6xy + 23)i +(3x2 -Z)j+ (3;~<z2 —y)k is irrotational, find ¢ such that F = V¢.

(05 Marks)

Prove that div (curl u) = 0. (05 Marks)
1 of 2
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OR
If T = Xj+Yj+2zg, then prove that : i) Vx T=0 ii) V2t = n(n+ l)r”"2 . (06 Marks)
(05 Marks)
Prove with usual notations Curl (grad ¢) =0
. i ? .4 ? S R
Find div f and curl f of f =grad(x” +y~ +2z° —3xyz). (05 Marks)
Module-4
Obtain the reduction formula of Isin M xcos™ x dx . (06 Marks)
Solve (x> + y° + 6x) dx + y’x dy = 0. (05 Marks)
Find the orthogonal trajectory of r" = a" cos n, where a is the parameter. (05 Marks)
OR
ho
Obtain the reduction formula of jcosn x dx and hence evaluate : _[ cos" xdx. (06 Marks)
0
Solve & = xy3 - XY . (05 Marks)
dx

If the temperature of the air is 30°C and the substance cools from 100°C to 70°C in
15 minutes, find when the temperature reaches at 40°C. (Use Newton’s law of cooling).

(05 Marks)
Module-5
Find the rank of the matrix
2 3 -1 -1
A= e R | (06 Marks)
3 1 .3 =2
6 3 0 -7
Find the largest eigen value and the corresponding eigen vector of the mairix
2 W 4N
A=|0 2 0|bypower method, use [1, 0 0]". as initial vector, take five iterations.
1 RN\
(05 Maiks)
- 14
Reduce the matrix A ={ " } to the diagonal form. (05 Marks)
OR

Use Gauss — Siedel iteration method upto 3 iterations to solve with (0, 0, 0) as initial values
10x+ y+z=12

x+10y+z=12

x+y+10z=12. (06 Marks)
Show that the transformation :
y1=2X + X2 + X3
Y2 = X| + Xy + 2%3

¥ =X~ 2%
is regular. Write down the inverse transformation. (05 Marks)
Reduce the quadratic form 3x* + 5y* + 32% — 2yz + 22x — 2xy to the canonical form.

(05 Maiks)
TETL

206t2



Imnartant Nate -

compuliority dreove diqonngd

T Om completine vonr answers,

Download latest question papers and notes from
VTU campus app on playstore

1SMATI11

Time

First Semester B.E. Degree Examination, June/July 2017
Engineering Mathematics - |

: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

Module-1
Obtain the n'™ derivative of »—-—‘—é—%. (06 Marks)
(x-D¥x+2)
Find the angle of intersection of the curves r= a(l+sin 0) and r = a(1-sin 0). (05 Marks)
Find the radius of curvature at the point (%‘l?j on the curve X’ + y° = 3axy. (05 Marks)
OR
. ! _L \
[fy™+y ™= 2x, then prove that (x” = 1) ypy2 + 2n + 1) Xyn.1 + (" = m")y, = 0.
(06 Marks)
Obtain the pedal equation of the curve " = a" cos n0. (05 Marks)
Find the derivative of arc length of x = a (cost + logtan (1)) and y=a sin t. (05 Marks)
2

Module-2
Expand logex in powers of (x — 1) and hence cvaluate log. (1.1) , correct to four decimal
places. (06 Marks)
[f7 = sin (ax + y)+ cos (ax-y) . prove that :—/ a?—(;—{'. (05 Marks)

X’ cy’
fu=x"+y +7 ,v= Xy +vz+zx. w=x+1y+z then find v, w). (0S Marks)
o(X,y.2)
OR
Ifu(xty)= X+ y2, then prove that R ] P r:u . (06 Marks)
ox ¢y ox  Cy
X WX N N \}i
IEvaluate [t a bﬂ— ‘ (05 Marks)
X0 4 /
Ifu-=1 1_1_1 . then prove that x uc + yuy, + zu, = 0. (05 Marks)
y 7z X
Module-3
dodule-)

A particle moves on the curve X = 2ty = t — 4t . z = 3t — 5. where t i the time. Find the
components of velocity and acceleration at time t = | in the direction i- U +2K. (06 Marks)
If f=(x + y + az)f + (bx - 2y ~ 7) ; (Xt ocy t 27) k . find a, b, ¢ such that f is
irrotational. . . (05 Marks)
Find the angle between the surfaces x™ + v

+o7 =9 and ~ = x* + 3" — 3 at the point
P(2. -1, 2). (05 Marks)
lof2
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OR
Find the directional derivative of xy* + y7* at (2. -1. 1) in the direction of the vector
i 2] +2k. (06 Marks)
If G=:x%i+y”j+7°k and V = yzi +2xj + xyk . show that @i V is a solenoidal vector.
© (05 Marks)
For any scalar field ¢ and any vector field ', prove that curl (¢ f) = ¢ curl { + (grad ¢) x f.
(05 Marks)
Module-4
Obtain the reduction formula for jcos” x dx. where n is a positive integer. hence evaluate
7
cos” xdx . (06 Marks)
0
Solve : (x* +y +x) dx + xydy = 0. (05 Marks)
Find the orthogonal trajectories of the family of circles r = 2 a cos 0 , where "a’ is :
pararaeter. (05 Marks)
OR
w x()
Evaluate | ———-dx. (06 Marks)
o (1+ x")/3
. 2, dy
Solve xy (1 +xy) e =1. (05 Marks)
X
Water at temperature 10"C takes S minutes to warm upto 20°C in a room temperature 40°C.
Find the temperature after 20 minutes. (05 Marks)
Module-5
Solve the following system of equations by Gauss Elimination Method. (06 Marks)

x+2v+z=3 [ 2x+3y+22=95 3x=5y+ 57 =2.
Find the dominant eigen valuc and the corresponding eigen vector by power method

L6 -2 2
A=1-2 3 -] E, perform S iterations. taking initial eigen vector as [1 1 1]'. (05 Marks)
2 -1 3
Show that the transformation y; = 2x+ y +7 ,v> =x+y+2z ,y3=x—2z1is regular. Write
dowr: the inversc transformation. (05 Marks)
OR
Solve the following system of equations by Gauss — Seidel method. (06 Marks)

10x+2y+z=9  x+10y—z- -22 | -2x*+ 3y -+ 10z =22.

- 7
Reduce the matrix A = [ 9 ]6} to the diagonal form. (05 Marks)
Reduce 8x* + 7)'2 +37 - 12xy + 4xz — 8yz into canonical form. (05 Marks)
* k % K* X

20f2
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USN 15MATI11
First Semester B.E. Degree Examination, Dec.2015/Jan.2016
Engineering Mathematics - |

Time: 3 hrs. Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.
Module-1

i 2
Find the n'® derivative of —2x—~— (06 Marks)
2X"+7x+6
Find the angle between the curves r’ sin2 8 =4 and r* = 16 sin 2 6. (05 Marks)
Find the radius of curvature of the curve represented by x = a(6 + sin 8) , y=a(l- cos0).
{05 Marks)
OR
2 If y=(x + 4/x* —1)™ then prove that (x* - Dymz2 +(2n+ Dxyn + (07 — mP)y, = 0.
(06 Marks)
Find the pedal equation of =" = a(1 + cos n 6). S (05 Marks)
Find the radius of curvature of the curve r" =2a" sin n6. (05 Marks)
Module-2
3 Expand sin x in powers of (x - g) upto fourth degree term. (06 Marks)
Evaluate lin}) xe —lozg(l *X) . (05 Marks)
9(X,y,2)
Ifu=x+y+zuv=y+z uvw=zthen find =227 (05 Marks)
o(u,v,w)
OR
4 Find the Maclaurin’s series expansion of sec x upto x* term. {06 Marks)
IfV(xy) = (1-2xy + ¥} and x%— y%: y* V¥ | then find K. (05 Marks)
Ifu = sin’ %ﬂs—si— then find xég+ y@+z§£. (05 Marks)
X'+y +2 ox dy oz
Module-3
5 A particle moves along the curve whose parametric equations are x =t + 1,y =1t} z=2t+5

where t is the time. Find the component of its velocity at t = 1 in the direction of I + J + 3K.
Find also the component of its acceleration at t = | along the normal to [ + J + 3K. (06 Marks)

Verify whether A = (2x + yz) | + (4y + zx) J — (6z — xy)K is irrotational or not. And find the

scalar potential of A . (05 Marks)
If A is a vector point function and ¢ is a scalar point function then prove that
divip A)=ddiv A +(grad). A. (05 Marks)
OR

1 of2
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If f=x21+ v ]+ 722 K and g=yzl + zxJ + xyK, then verify whether f x g is solenoidal

or not. {06 Marks)
Find the directional derivative of o =x"+ Y + 277 at P(1, 2, 3) n the direction of line
PQ =4i—2j+k. (05 Marks)
Prove that curl (grad ¢) = O . (05 Marks)
Module-4
7
Obtain the reduction formula for Isin“ x dx. Hence evaluate J‘ sin” x dx. (06 Marks)
i
Solve (4xy + 3y* - x) dx + x(x+2y)dy = 0. (05 Marks)
Find the Orthogonal trajectories of the family r” = a" sin n, where a is the parameter.
(05 Marks)
OR
2o &
Evaluate I _rex (jx] — . (06 Marks)
o (4+x7)77
Solve xj—y- +y=xy* '. (05 Marks)
X
A body is heated to 110°C and placed in air at 10°C. After one hour its temperature become
60°C. How much additional time is teqiiired for it to cool to 30°C? (05 Marks)
Module-5
Solve the following system of equations by Gauss — Jordan method -
Xty+z=8 ; x—-y+2z=4 . 3x+5y-7z2=14. {06 Marks)
Verify the transformation yr=19%x; - 9%, + 2x; ; Y2=-4x1+2x3- X3 y3=-2X, + X, is
regular or not and find the inverse transformation if possible. (05 Marks)
Reduce the matrix to the diagonal form
1 1
A= . (05 Marks)
3 -1
OR
Solve the following system by Gauss — Seidal method - (06 Marks)

20x+y-2z=17 ; 3x+20y-z=-18 3 2X =3y + 20z = 25. Perform three iterations,
Determine the largest eigen value and the corresponding eigen vector of

2 -1 0
A=|-1 2 -1 using Power method. (05 Marks)
0 -1 2

Take (1, 0, 0)" as the initial eigen vector and perform four iterations.
Reduce the quadratic form :
8x” + 7Y +32° - 12Xy + 4xz - 8yz into canonical form. (05 Marks)

* k% %

20f2
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First Semester B.E. Degree Examination, Dec.2016/Jan.2017
Engineering Mathematics - 1

Time: 3 hrs. Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

find the scalar potential.

é Module-1
£ 1 a IHy= ¢* cos’x, find Yn. (06 Marks)
£ b. Find the angle between the curves
T r= and r = . (05 Marks)
5 1+cos6 1-cosO
g 5 c. Find the radius of curvature of the curve x* + y4 =7 at the point (1, 1). (05 Marks)
OR
S;D‘f 2 a. Ifx=tan(logy), find the value of (l+x2)yn+1 + (2nx-Dyn + (n)(n-1)yn-1. (06 Marks)
g% . .
£ b. Find the Pedal equation of L 1+ cos ©. (05 Marks)
g . r
E c. Find the radius of curvature of the curve r" = a" cos nb. (05 Marks)
Gl
o i
2 Module-2
% § 3 a. Explain log(cos X) about the point X = —732 upto 3" degree terms using Taylor’s series.
fé (06 Marks)
< o 2
§h . . [tanXx i’
5 b. Evaluate Limit . (05 Marks)
;% x—0 X
S ou  Ou x +y’
= c. State Euler’s theorem and use it to find x—+Y¥— whenu = tan” | ——— | (05 Marks)
g .5 13).¢ oy X+Yy
22
E =
€z OR
g2 x
g .% 4 a. Expand 7 © - using Maclaurin’s series upto and including 3¢ degree terms. (06 Marks)
=] +€
t’ é . du 3 2.3 ¢ 2 : : H
co b. Find —dt—when u=xy +xy withx=at,y= 2at. Use Partial derivatives. (05 Marks)
& ob
i g
-3
£ f;i c. Ilfu= XoXs ,V= XX , W= z{—‘iz—, find the value of Jacobian J VW 1 (05Marks)
S X, X, X; XX, X3
z g
"<
o Module-3
/ 5 a. A particle moveson the curve x=2t",y=1 - 4t,z=73t-35, where t is the time find the
: components of velocity and acceleration at time t =1 in the direction of i —3j + 2k.
: (06 Marks)
r b. Find the divergence and curl of the vector V=(xyz2)i + 3xy)j + (x2* - y*z)K at the point
(2, -1, 1. (05 Marks)
c. A vector field is given by A= (x2 + xyz) i+ (y2 + xzy)j, show that the field is irrotational and

(05 Marks)
1 of2
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OR
Find grad ¢ when ¢ = 3x%y — y’7z* at the point (1, -2, -1). (06 Marks)
Find a for which f= (x + 3y)i + (y - 22)j + (x + az)k is solenoidal. (05 Marks)
Prove that Div(curl \7) =(. (05 Marks)
Module-4
Obtain the reduction formula of j‘ sin™ x cos"x dx. (06 Marks)
2a
Evaluate J xv2ax — x? dx. (05 Marks)
0
Solve (2x log x — xy) dy + 2ydx =0. (05 Marks)
OR
Obtain the reduction formula of fcos" X dx. (06 Marks)

Obtain the Orthogonal trajectory of the family of curves r" cos n 6 = a". Hence solve it.
(05 Marks)

A body originally at 80°C cools down at 60°C in 20 minutes, the temperature of the air being
40°C. What will be the temperature of the body after 40 minutes from the original?(05 Marks)

Module-5
Find the rank of the matrix
2 3 -1 -1
A= -1 -2 -4 . (06 Marks)
31 3 =2
6 3 0 -7
Solve by Gauss — Jordan method the system of linear equations
2Xx+y+z=10,3x+2y+3z=18 , X+4y+9z=16. (05 Marks)
Find the largest eigen value and the corresponding Eigen vector by power method given that
2 01
A=10 2 0/.(Use[100 1" as the initial vector). (Apply 4 iterations). (05 Marks)
1 0 2
OR
Use Gauss — Seidel method to solve the equations (06 Marks)
20x+y~2x=17
3x+20y-z=18
2x -3y + 20z = 25. Carry out 2 iterations with xg = Yo=12=0.
-1 2 -2 :
Reduce the matrix A = | 1 2 1 | tothe diagonal form. (05 Marks)
-1 -1 0
Reduce the quadratic form 3x* + 5y + 322~ 2yz + 2zx — 2xy to the canonical form.
(05 Marks)
* %k Kk k %
2 of 2
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First Semester B.E. Degree Examination, Dec.2017/Jan.§2018
Engineering Mathematics - | '

Time: 3 hrs. h “Max. Marks: 80
Note: Answer FIVE full questions, choosing one full question from each module.

: Module-1
1 2 Find the n" derivative of 'y = e sin xcos2x. s (06 Marks)
Show that the curves 1 :ét(ldr cos0) and r=b(l—cosBYy cut- ~ach other orthogonally.
‘ ' N (05 Marks)
c. Find the radius of curvature of the curve X’y = a(x’ +y?)at the point (-2a, 2a). (05 Marks)

OR
2 a. If y=sin(msin~' x), then prove that (i- xz)ymz:—(in +1)xy,,, +(n* —m*)y, =0 (06 Marks)
Find the pedal equation of r=2(1+cos0). (05 Marks)

c. Find the radius of curvature of r" =a"sinnd. (05 Marks)

Meodule-2:

3 a Expand tan” xin powers of (x~1) upto the fourth degree term. (06 Marks)
, 1+x) |
b. Evaluate l1m{l - lg_z._(_;_x_) (05 Marks)
x—0] X X
o’ o’
c. If z=f(x+ct)+g(x—ct), prove that azz = CZ.B;ZZ— : (05 Marks)
. OR . ‘
4 a. Obtain the Maclaurin’s scries expansion of e™* upto the form containing X', (06 Marks)
4 4\ C
oF 0 /
b, Ifz= log(x il y'—J, show that x ?B— + y—B =3, e (05 Marks)
X+y ) ox S
: 2, G2 o2 o(u, vV, w)
c. fu=x+y'+z°, v=EXy+yZ+ZX, W =X +y+z, show that =22 =0 (05 Marks)
o 0(x,Y,2)

; Module-3 i,
5 a. A particle moves along the curve whose parametric equations are X =t 4ty = t* and

7 =2t+5. Find the components of its velocity and acceleration at time (= | in.the direction

of i-+j+3k. < (06'Marks)
b. If ¢=2x’y’z", find Div(Grad ). (85 Marks)

¢. Show that F=(y+2)i+(z+x)j+(x+ yk is irrotational. Also find a scalar function (\bl,h‘such

that —f; =Vd. (05 Marks)

| of 2
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OR
Find" the directional derivative of ¢=x’yz+4xz’ at P(1, =2, —1) in the direction of
2i~j-2k. (06 Marks)
If F=(X+y+1)i+j—(x+y)k . Show that F.curl F=0. (05 Marks)
If F=V(xy’z%), find divF and curl F at the point (1, -1 , 1) (05 Marks)
y Module-4
Obtain the reduction fprmula for J.cos“ xdx . ' (06 Marks)
Solve ye™dx +(xe™ +2y)dy = 0. et (05 Marks)
Find the orthogonal trajectories of the family of curves yi=Cx’. (05 Marks)
OR
1 y 3/
Evaluate J.x 2(1-x)"dx. ‘ : (06 Marks)
! :
dy 2 . .
Solve f—y——y :Z?. (05 Marks)
dx x X" -
A body is heated to 110°C and placed in air at 10°C. After one hour its temperature becomes
60°C. How much additional time is required for it to cool to 30°C? (05 Marks)

. ~Module-3

4 0 2 1
. . ) 21 3 4
Find the rank of the matrix A=/ . (06 Marks)
42 3 4 7
231 4
Solve the following system of equations by Gauss Jordan method:
X+2y+z=3, 2x+3y+32=10, 3x—y+2z=13 (05 Marks)
-1 3
Reduce the matrix A :{ J to the diagonal form. (05 Marks)
}’\\ R X OR

Solve the fb\ll\\(\)wing system of equations by Gauss-Seidal method:
20x +y 26=17, 3x+20y—z=-18, 2x — 3y+20z=25. Perform three iterations.

(06 Marks)
Showy that the transformation, Yi=2%,=2X, =X, y, =—4X, +5%, +3X,, y, =X, ~X, - X,
isj\re\guiar and find the inverse transformation. (05 Marks)
- Reduce the quadratic form,
- 3x743y? 327+ 2xy - 2yz + 22x_into the canonical form. (05 Marks)
* %k %k ok k

20f2
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