Assignment Questions

Module -1 Modern Physics and Quantum physics

- 1. Explain the energy distribution in the spectrum of a black body. Give an account of the attempts made through various laws to explain the spectrum.
- 2. Explain Wien's law and Rayleigh-Jeans law and Mention their drawbacks.
- 3. What are the basic assumptions of quantum theory of radiation? Explain how Planck's overcome the drawback of Wein's law and Ray-Jeans law
- 4. State and explain Planck's law of radiation. Show that it reduces to Wien's law and Rayleigh-Jeans law under certain conditions?
- 5. Give a qualitative account of Compton effect
- 6. State de-Broglie hypothesis. Show that the de Broglie wavelength for an electron accelerated by potential difference V volts is $\lambda = \frac{1.226}{\sqrt{V}}$ nm for non-relativistic case.
- 7. Explain the characteristics of matter wave.
- 8. Discuss Phase velocity and Group velocity? Obtain the expressions for both.
- 9. Explain group velocity and phase velocity. Derive the relation between them.
- 10. Derive expressions for group velocity on the basis of superposition of waves.
- 11. Show that the group velocity of de Broglie waves is equal to the velocity of the particle with which the waves are associated.
- 12. State and explain the Heisenberg uncertainty principle. Using this principle, show that the electrons cannot reside in an atomic nucleus.
- 13. Derive time-independent Schrödinger wave equation. What is the physical significance of state function ' ψ ' used in this equation?
- 13. What is a wave function? Explain the properties of wave function?
- 14. Write down the Schrödinger equation for a particle in one-dimensional box. Obtain the eigen functions and eigen values for this particle.
- 15. Discuss the wave functions, probability densities and energy levels for a particle in a box.
- 16. Describe zero-point energy.

Module-2

Electrical properties of materials

- 1. Define drift velocity, mean collision time, mean free path and relaxation time.
- 2. Explain the three failures of classical free electron theory.
- 3. What are the assumptions made in quantum free electron theory? Explain success of this theory.
- 4. Explain density of states?
- 5. What is Fermi- Dirac statistics? Explain.
- 6. Define Fermi energy, Fermi factor and Fermi level. Describe the variation of Fermi factor with energy and temperatures.
- 7. Explain the laws of mass action and derive the conductivity expression of a semiconductor.
- 8. Explain Fermi level in an intrinsic semiconductor.
- 9. What is Hall effect? Derive an expression for the Hall coefficient in an n-type the material semiconductor. Discuss what information can be obtained from Hall measurement regarding the material parameter.
- 10. Discuss BCS theory of superconductors.
- 11. Distinguish between type-I and type-II superconductors.
- 12. Write a brief note on high temperature superconductivity.
- 13. Explain the Meissner effect and Write a short note on Maglev vehicle.

Module-3

Laser and Optical Fibres

- 1. Mention the Characteristics of laser beam. Derive the expression for energy density of radiation using Einstein's coefficients. Compare the expression with Planck's equation?
- 2. Explain the requisites and conditions of a laser system.
- 3. Explain the construction and working of CO₂ laser with the help of energy level diagram.
- 4. What are semiconductor diode lasers? Describe the construction and working of Semiconductor laser with the help of energy band diagram. Mention the uses and advantages of diode lasers?
- 5. Describe the recording and reconstruction processes in Holography with the help of suitable diagrams. Mention the applications of holography.
- 6. Describe briefly the application of lasers in welding, cutting, drilling.
- 7. Describe the principle and working of LIDAR used to measure pollutant in atmosphere.
- 8. What is meant by acceptance angle for an optical fiber? Show how it is related to

numerical aperture.

- 9. Obtain an expression for numerical aperture and arrive the condition for propagation
- 10. Discuss types of optical fibers and modes of propagation using suitable diagram.

- 11. What is attenuation? Discuss the contributing factors for the same.
- 14. Describe the point to point communication system, with the help of a block diagram?

Module- 4 Crystal Structure

- 1. Define lattice points, Bravais lattice, unit cell and primitive cell.
- 2. Explain briefly the seven crystal systems with neat diagrams.
- 3. What are miller indices? Explain how axial intercepts in a crystal plane are converted into miller indices.
- 4. Define planes and directions of crystals and mark the $(\overline{1}02)$ & $(1\overline{1}\overline{2})$ planes in the cubic unit cell.
- 5. Derive an expression for inter planar spacing of a crystal in terms of Miller indices.
- 6. Define coordination number and atomic packing fraction. Calculate packing fraction for SC, BCC and FCC structures.
- 7. Determine the coordination number, number of lattice points per unit cell.
- 8. Sketch and explain the structure of diamond crystal.
- 9. Define allotropy and discuss allotropy of carbon with reference to diamond & graphite.
- 10. Define polymorphism and discuss it by taking the example of iron.
- 11. Discuss about the structure of Perovskite qualitatively.
- 12. Describe with suitable diagrams, how a liquid crystal display works.
- 13. List the differences between LED and LCD devices.
- 14. Derive Bragg's law.
- 15. Describe how Bragg's spectrometer is used for determination of crystal structure.

Module-5

Shock Waves and Science of Nano materials

- 1. Define Mach number and distinguish ultrasonic, subsonic and supersonic waves.
- 2. Distinguish between subsonic and supersonic flights of a body with the help of a diagram.
- 3. Explain sonic boom and a shock wave.
- 4. Explain the construction and working of Reddy tube with the help of a diagram.
- 5. Write a brief note on Rankine-Hugoniot equations.
- 6. State different methods of creating shock waves in the laboratory using shock tubes.
- 7. Discuss the applications of shock waves.
- 8. Explain the experiment to find M, p₂, T₂, P₅ & T₅ using Reddy tube.
- 9. What is mesoscopic state? Explain the special features of matter in mesoscopic state.
- 10. Discuss the density of the states for various quantum structures.
- 11. Expain construction and working of ball milling method.
- 12. Write a note on Sol –gel method.
- 13. Describe Arc discharge method of obtaining carbon nano tubes with the help of diagram.

- 14. Write a note on Pyrolysis method of obtaining carbon nanotubes.
- 15. Write a note on carbon nanotubes.
- 16. Write the structures and applications of carbon nanotubes.
- 17. Describe the principle, construction and working of Scanning electron microscope.