ENGINEERING MATHEMATICS -II 15MAT21

SYLLABUS
ENGINEERING MATHEMATICS-I1I

Subject Code: 15MAT21 IA Marks: 20
Hours/Week: 04 Exam. Hours: 03
Total Hours: 50 Exam Marks: 80
Obijectives:

To enable students to apply knowledge of Mathematics in various engineering fields by making
them to learn the following

* Ordinary differential equations

* Partial differential equations

* Double and triple integration

* Laplace transform

Module — 1

Differential equations-1:
Linear differential equations with constant coefficients: Solutions of second and higher order
differential equations - inverse differential operator method, method of undetermined

coefficients and method of variation of parameters. 10 hrs

Module — 2

Differential equations-2:
Solutions of simultaneous differential equations of first order.

Linear differential equations withvariable coefficients: Solution of Cauchy’s and Legendre’s
linear differential equations.

Nonlinear differential equations - Equations solvable for p, equations solvable for y, equations
solvable for x, general and singular solutions, Clairauit’s equations and equations reducible to

Clairauit’s form.

10 hrs
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Module — 3

Partial Differential equations:

Formulation of PDE by elimination of arbitrary constants/functions, solution of non-
homogeneous PDE by direct integration, solution of homogeneous PDE involving derivative
with respect to one independent variable only.

Derivation of one dimensional heat and wave equations and their solutions by variable separable
method. 10hrs

Module — 4

Integral Calculus:

Double and triple integrals: Evaluation of double and triple integrals. Evaluation of double
integrals by changing the order of integration and changing into polar coordinates.

Application of double and triple integrals to find area and volume.

Beta and Gamma functions: definitions, Relation between beta and gamma functions and
simple problems. 10hrs

Module -5

Laplace Transform:

Definition and Laplace transforms of elementary functions. Laplace transforms of
e™ f (t),t" f (t) and ? (without proof), periodic functions, unit-step function - problems

Inverse Laplace Transform
Inverse Laplace Transform - problems, Convolution theorem to find the inverse Laplace
transforms (without proof) and problems, solution of linear differential equations using Laplace

Transforms. 10hrs
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Course Outcomes:

On completion of this course, students are able to,

* Use ordinary differential equations to model engineering phenomena such as electrical circuits,

forced oscillation of mass spring and elementary heat transfer.

* Use partial differential equations to model problems in fluid mechanics, electromagnetic theory
and heat transfer.

* Evaluate double and triple integrals to find area, volume, mass and moment of inertia of plane
and solid region.

* Use curl and divergence of a vector function in three dimensions, as well as apply the Green's

Theorem, Divergence Theorem and Stokes' theorem in various applications like electricity,
magnetism and fluid flow.

» Use Laplace transforms to determine general or complete solutions to linear ODE.
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INDEX SHEET
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MODULE -1

DIFFERENTIAL EQUATIONS I
INTRODUCTION:

We have studied methods of solving ordinary differential equations of first order and first degree, in
chapter-7 (Ist semester). In this chapter, we study differential equations of second and higher orders.

Differential equations of second order arise very often in physical problems, especially in connection
with mechanical vibrations and electric circuits.

LINEAR DIFFERENTIAL EQUATIONS OF SECOND AND
HIGHER ORDER WITH CONSTANT COEFFICIENTS

A differential equation of the form

-1 -2

d"}:' dﬂ }! d!‘! :,‘J
—ta—ta,——5 + .. +a, y=X

dx dx” dx” " '

(1)
where X is a function of x and a,, a, ..., a, are constants is called a linear differential equation of

n'™ order with constant coefficients. Since the highest order of the derivative appearing in (1) is n,
it is called a differential equation of n™ order and it is called linear.

Using the familiar notation of differential operators:

D=—.D=—, D= =
dx dx”

Then (1) can be written in the form
(D" +a, D' +a, D'+ a)y=X

Le., fyy =X (2)
where f(D)y = D" + q, ) a, D'y a.

Here f(D) is a polynomial of degree n in D

If

x = 0, the equation
fD)yy =20
is called a homogeneous equation.

If x # 0 then the Eqgn. (2) is called a non-homogeneous equation

SOLUTION OF A HOMOGENEOUS SECOND ORDER LINEAR DIFFERENTIAL
EQUATION
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We consider the homogeneous equation

bl

S

y dy
—+p—+qy =0
TP T

dx
where p and g are constants

D*+pD+qg)y =0
The Auxiliary equations (A.E.) put D = m

m +pm+gq =0
Eqn. (3) is called auxiliary equation (A.E.) or characteristic equation of the D.E. egn. (
quadratic in m, will have two roots in general. There are three cases.
Case (i): Roots are real and distinct
The roots are real and distinct, say m  and m, ie., m #m,
Hence, the general solution of eqn. (1) is
y=C "+ C "
where C| and C, are arbitrary constant.
Case (ii): Roots are equal
The roots are equal i.e., m =m, = m.
Hence, the general solution of eqn. (1) is
y=(C, +C x)™
where C,| and C, are arbitrary constant.
Case (iii): Roots are complex
The Roots are complex, say o + if§
Hence, the general solution is
y = e (C, cos Bpx+ C,sinfx)
where C| and C, are arbitrary constants.

Note. Complementary Function (C.F.) which itself is the general solution of the D.E.

2
1. Solve d—';—:? dy_+6y = 0.
dx dx
Solution. Given equation is (D> — 5D + 6) y = 0
AE. is m*—5m+6 =0
ie., (m-=2) (m-23) 0

ie., m= 2.3

m =2,m,=3
.. The roots are real and distinct.
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. The general solution of the equation is

y=C, e+ C,e™

2. Solve —= —

Solution. Given equation is (I’ — D* — 4D + 4) y

d’y dzy
dy’  dx’

dy

—4—+4y = 0.
dx

AE. is m> —m*—4m+4 = 0
mm-1-4m-1) =0
m—-1)(m>—4) =0

m=1m==x2

m, = ],mQ:Q,m}:—;

. The general solution of the given equation is

a’zv dy

y=0C e +C, e+ C

3. Solve —5———06y = 0.
olve — 5= ~0

X

Solution. The D.E. can be written as
(D*-D - 6)y
AE. is m’ —m—6
(m—3)(m+ 2)

m

. The general solution is

d*y dy

-\'!'

0

0
0
3,-2

L]

C, &+ C, e

4. Solve 4+ 8 —+ 1oy = 0.
dr )

dx’

Solution. The D.E. can be written as
(D* + 8D + 16)y

AE. is m + 8m +

16

(m + 4)*

m+4) (m+ 4)

m

. The general solution is

5. Solve

2

dx”

-\'.'

} +w'y = 0.

0

Solution. Equation can be written as
(D* + w))y

AE. is m +

A

IVIZ V11 I JVLIT

0
0

15MAT21
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m> = —wr=wi (i =-1)

m=tTwi
This is the form o £ i where o0 = 0, f = w.
. The general solution is
y = & (C, cos wt + C, sin wi)
sy = C, cos wt + C, sin wt.
dz}! dy

Aot 13y =0.

Solution. The equation can be written as
(D> +4D + 13)y = 0
AE.is m +4m+13 = 0
-4+ ,/16-52
2

—2 % 3i (of the form o £ if)

6. Solve

. The general solution is

¥ e (C , cos 3x + C, sin 3x).

INVERSE DIFFERENTIAL OPERATOR AND PARTICULAR INTEGRAL

Consider a differential equation

fDyy =x (1)
Define L such that
f(D)
f(D]{—l}x - @
f(D)
Here f(D) is called the inverse differential operator. Hence from Eqn. (1), we obtain
|
V="' (3
Y = D) ©

Since this satisfies the Eqn. (1) hence the particular integral of Eqn. (1) is given by Eqn. (3)

1
Thus, particular Integral (P.I.) = WI

. . . 1 -
The inverse differential operator ——— is linear.

f(D)
' L{mc +bx,} = a—x +b——x
ie., (D) W Ty = Ay T O Ty

where a, b are constants and x, and x, are some functions of x.
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SPECIAL FORMS OF THE PARTICULAR INTEGRAL

ax

Type 1: P.L of the form

f(D)
We have the equation f(D) y = ™
Let fD) = D*+ a, D+ a,

We have D (e™) = a e, D’ (e™) = a° ¢ and so on.
. ar 2 ax
fD) e = (D +a, D +a,)e
= a’ e + a. ae™ + a, et

= (@ +a,.a+a,) e =fla)
Thus f(b) e = f(a) e™*

Operating with ] ] on both sides

ax

We get, e = f(a). .e
£ (D)
p l l Em eﬂ‘.l'
or I = =
f(D) f(D)
In particular if f(D) = D — a, then using the general formula.
W 1 - eﬂ.\' l eﬂ.\f
1, T = = .
© & D-a® (D-a)0(D) D-a o(a)
eﬂ.\f ] . ]
Le., = e |1.dx = xe™
f(D) ~ ofa) J o (a)
o fla) = 0+ d(a)
or fla) = ¢(a)
Thus, Eqn. (1) becomes
E(u ear
= X. P
f(D) (D)
where fla)y =0
and flay =0
This result can be extended further also if
f@ = 0, ~ = = and
a) = 0, = . — and so on.
(D) f"(a)
sin ax  cosax
Type 2: P.L of the form ——,
f(D) f(D)

We have D (sin ax) = a cos ax
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D? (sin ax) = — a® sin ax
D? (sin ax) = — @’ cos ax
D* (sin ax) = a* sin ax
= (—a*)? sin ax and so on.
Therefore, if f(D?) is a rational integral function of D? then f(D?) sin ax = f(—a®) sin ax.

1 o] l 2 .
Hence ———1f(D"|sinax; = - f(—a‘) sin ax
et = )
. . Fea —
Le., sinax = f(—a -7 sin ax
f(D?)
. sin @ sin ax
Le., p = .
f (D7) f(-a*)
Provided f(=a* = 0 (1)
Similarly, we can prove that
1 cosqr — _cosax
£(0?) f(-a?)
if f(=a®) = 0
In general ] cosax = =@
1(07) f(-a’)
if f(=a®) =0 .(2)
1
—sin (ax +b) = — sin (ax + b)
r(0?) I(-a?)
and —cos(ax+b) = — cos(ax +b)
1(27) I(-a*)
These formula can be easily remembered as follows.
%sinax - i_l.sillaxfix = —~ cosax
D +a” 2 2a
x X
—— COSax = —Jcosax ax = — sinax.
D-+a- 2 2a
Type 3: P.I. of the form JTl{;]] where ¢ (x) is a polynomial in x, we seeking the polynomial
Eqn. as the particular solution of
fDy = 0
where O (x) = a, X" + a, g a_,x+a,

Hence P.I. is found by divisor. By writing ¢ (x) in descending powers of x and f(D) in
ascending powers of D. The division get completed without any remainder. The quotient so obtained
in the process of division will be particular integral.
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ax

Type 4: P.I. of the form ¢ where V is a function of x.

| a1
We shall prove that 7(D) e V=oe f(D—-l—a]V
Consider D™ V) = e DV + Va ™
=e"D+a)V
and D™ V)=e"D*V+ae*DV+a e*V+ae™DV

= e (DPV+2aDV+aV)
= e (D +a’V

Similarly, D (™ V) = ¢ (D + a) Vand so on.
fD) eV =e"f(D+aV ...(1)
1
-— -— —U
Let f(D+a)V =U, sothat V f(D+a]

Hence (1) reduces to

1
f{D) Ea_r —U — Efﬂ' U
f(D+a)

1
Operating both sides by ———= we get,

f(D)
e _ Uu - 1 e
fo+a) = (D)
1 ax ax ]
ie. ——e"U - e ——U
f(D) f(D+a)
Replacing U by V, we get the required result.
4 "V
Type 5: P.I. of the form a ,x— where V is a function of x.
f (D) f(D)

By Leibniz’s theorem, we have
D'aGV)=xD'V+nl DLy

=xD"V+ {iD"}V

dD
s fD)yxV=xfD)V+f D)V (1)
Eqgn. (1) reduces to
Voo f'(D)| v )
7(D) 7(D) | 7(D) 2

This is formula for finding the particular integral of the functions of the xV. By repeated
application of this formula, we can find P.I. as X* V, X’V ...... .
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Type 1

2
1. Solve d " —5ﬁ+5}p = e*

dx” dx
Solution. We have

(D* - 5D +6)y = &~
AE. is m —5m+6 =0
ie., m—-—2)(m—-—3) =20
= m = 23

Hence the complementary function is
- CF.=C, e+ C, e
Particular Integral (P.L.) is

1 S5x

= —————&
P.1 DX sD+6 (D — 5)
1 5_1. ES.‘[’
= ,_,—E' = .
5 -5x5+6 6

. The general solution is given by
vy = CF. + P.L

5x

_ e
=C,e"+C, e +

=
2. Solve d " - .?ﬁ+2}-' = 10e™
dx” dx

Solution. We have
(D> —3D + 2)y = 10 &
AE ism*-3m+2=0

ie., m-2)(m—-—1) =0
m = 2,1
CF. =C e™+C, ¢
1 v
PL = 53552 ® -3
= q;l[}e“
3 —-3x3+2
10
Pl = >
.. The general solution is
vy = CF. + P.L
lC'E?lr —

C, e+ C,e" + 5 12

ol
Il
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2. .
3. Solve d’y _4ﬁ+4}1 = ¢,

¥

dx” dx
Solution. Given equation is
(D> —4D + 4)y = ¥

AE. is m —4m+4 = 0
Le., m-2)im-2) =20
m= 272
CF = (C, + () e~
1 7
Pl. = ———¢~ (D=2
D" —-4D+4
1 Fl‘r D 0
T 22 o42)+4 (Dr=0)
Differentiate the denominator and multiply ‘x’
1 I
= X. e D 2
2D 4 B2
X ] e Dr =0
T T 2(2)-4 (Dr=0)
Again differentiate denominator and multiply ‘x
2 1 2x
= X" —e
2
- .12 EI:
T2
N 1_2 EEx
y=CFE +PL=(C, +Cx)e"+ 5
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Type2:

Solve (IF + I — D - 1) y = cos 2x.
Solution. The AE. is
m+m —m—1=10
ie,mt(m + =1 im+1) =10
m+ 1D (m -1 =0
m=—1,m=1
m=-1lm=2=%1
m=-1-1,1
CF. = C e+ (C, + C; x) gt

Pl = - cos 2x (D2 = —2h

= cos 2x

(D+1)(D* -1}

1
= Ccos 2x

[E+J:|[—23—Ij|

-1
= — Ccos 2x
5 D+1

-1 cos2x D-1

— o
5 D+1 D-1

—1 (D-1)cos2x

—_ 2 _ 7l
S D7 ] (i — -2

—1| —25in2x —cos 2x
—2* 1

= —— (2 sin 2x + cos 2x)
-. The general solution is

v = CF +PL

=C e+ (G+Cix)e’ - le {2 sin 2x + cos 2x).
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2. Solve (D? + D + 1) y = sin 2x.
Solution. The A.E. is
m +m+1 =0
| 12 f1-4 1243
ie., m = ) = 5
Hence the C.F. is
-3 V3 V3
= e - |C —x+ 0, —
C.FE. € | COS > x+ (5 sin > X
PI. = ————sin2x (D> — —:
D-+D+1
= ,,;sin 2x
-2+ D+1
= sin 2x
Multiplying and dividing by (D + 3)
(D+3)sin2x
D* -9
(D+3)sin2x - )
= ————— = —(2cos2x+3sin 2x)
-2°-9 3

|

I"_

_x 3 /
~y=CF. +PL=¢?2|C, cos NQ x+C, sin \73 X|- l (2 cos 2x + 3 sin 2x).

i

3. Solve (D + 5D + 6) y = cos x + e

Solution. The A.E. is

m+5m+6 =0
ie., m+2y(m+3 =20
m=-2,-3
CF. = C, e+ C, %
1 5
Pl. = ————— [cos x + ¢7]
D= +5D+6
_ COS X N et
T D*+5D+6 D*+5D+6
= P.l.] + P.l.2
Cos X N 5
PL, = 5 ——— (D =-19
D +5D+6
B COS X . cosx
- —1*+5D+6 5D+5 —
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PL,

Differential and multiply ‘x’

P.L

.. The general solution is

}I

}I

1 cosx(D—l]

5 (D+1)(D-1)
I (D-T)cosx
5 D' -1

l—sinx—cosx

5 —1P-

—1 sinx+cosx

5 -2
1.
ﬁ(sm X+cosx)

e

——— (D —= -2)
D +5D+6

6’_2 X

(-2)*+5%-2+6

(D - -2)

CF +PL

|
Coe™+Coe™+ T (sin x + cos x) + x e

DEPT. OF MATHS/SJBIT
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Type 3
1. Solve " + 3y + 2y = 12¢°.

Solution. We have (D* + 3D + 2) y = 12x°

AE. is m+3m+2 =0
ie., m+1)m+2)=20
= m=-1,-2
CF. = Ce™ + CEE'Z"
12x°
PlL = ——
D*+3D+2

We need to divide for obtaining the P.I
6x? — 18x + 21
243D + D*| 1247

i Note:
12x° + 36x + 12 3D(6x2) = 36x
— 36x — 12 DXex’y =12
— 36x — 54
42
42
0
Hence, P.I. = 6x> — 18x + 21
. The general solution is
v = CF + PL
y = Ce™ + Ce™ + 6x% — 18x + 2.
2. Solve d‘-}! +2E+ y = 2x+x°.
dx” dx -
Solution. We have (D> + 2D + 1) y = 2x + x°
AE. is m+2m+1=0
Le., (m + 1}2 =0
Le., m+1)(m+1) =10
= m=-1,-1

CE =(C,+Cxe”

T 2 F
2x+x” X +2x

PI = - = ~
D-+2D+1 1+2D+ D-
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- —2x+2
1 +2D + D? ¥+ 2x

 +4x +2

-2x =2

-2x -4

2

2

0

PIL = x¥* —2r + 2
v =CF +PL
= (C, + Cx) e + (x* - 2x + 2).

Type 4
2. )
1. Solve d—}+2ﬂ—3v = ¢" cosx.
- dy
Solution. We have

(D> +2D - 3)y = € cos x

AE. is m> +2m—-3 =0
iée., m+3)(m-1) = 0
ie., m= -3 1

CF.=C e¥+C ¢
PI ;f’x COS X
T Dp*+2D-3

Taking €' outside the operator and changing D to D + 1

x 1
= e S COS X

(D+1)"+2(D+1)-3

— ¢ —————cosx [ N
D’ +4D & —=-1
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y =

y =

2. Solve (D7 + 1) y = Se* X2
Solution. A.E. is

m' + 1

ie, m+1)m —m+1)

(m+ 1)

m

C.F.

P.L

Taking " outside the operator

X

€
_1+4D

CoOs X

x— COS X ><4D+]_
14D-1 4D+1

[ _4sinx+cosx . 5
€ > (D~ — —-19
16 D° -1

.| —4sinx+cosx
-17

X

i—? (4 sin x — cos X)

CFE + PL

X

e .
— (4 sin x — cos x).

C _—3.\'
¢ 17

| +C, e+

3
() cas"—_::ﬁ—C; Siﬂ£)f
2 2

e

1

- Se* x°
D' +1

and changing D to D + 1

E".'x —] ) 5_1'2

(D+1) +1

5x°
D +3D*+3D+2

X

DEPT. OF MATHS/SJBIT
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2%’
2+3D+3D"+ D’

Se

2

(For a convenient division we have multiplied and divided by 2)

2+3D+3D7+ D | 2

1 ) 3 SE'I
Pl = (_\ —3_‘,+;}~T

e e

X

:Tflxl—ﬁx+3)

y = CE +PL

X X

7 3|3
= Ce'+el |C2 cos§x+q sin%xl+%(2x3 - 6x +3).
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Cl cos 2x + C2 sin 2x +

2. Solve (P + 2D + 1)y = x cos x.
Solution. AE. is
m +2m+1=0
ie., (m+ 1% =0
m=—-1,-1
CF. =(C,+C, xe”
XCOSX
Pl = D oper

ENGINEERING MATHEMATICS -II 15MAT21
Type 5
1. Solve d ‘ +4y = x sin x.
dxi_
Solution. We have
(D + 4)y = x sin x
AE. is m> +4 =0
m> = —4
m = *2i
CF. = C, cos 2x + C, sin 2x
Pl = — X sin x
D +4
L xV f(p)y| v
t us use = —— = |l ==
f(D) f(D) | F(D)
X sin x -x 2D sin x (D 2)
B = - 5 0] — — 1"
D= +4 | D +4|D +4
xsinx QD(S'HI,T] 5 5
= 5 — 3 (D — -19
D™ +4 (D2 +4]
xsinx . 2Co8 X
-3 3?
xsinx _ 2cosx
B 3 9
Pl = 9 (3x sin x — 2 cos Xx)
v = CF +PL

9 (3x sin x — 2 cos x|

DEPT. OF MATHS/SJBIT
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xV I (D
Let us we have ! = |x- / ( } L
f(D) — |7 f(D)| f(D)
-x 2D+2 COS X
" | D'+2D+1| D*+2D+1
X COS X (2D +2) cos x

D*+2D+1 (p242p+1)

PL, - PL,

. X COS X D .
1T priap+i @ =-19
xcosxx D

2D =D
—xsinx 5

= ——— D’ — —1°
2D’ " =-19

Pl iSilli‘
B - — 2 “

(2D+2]c-::-sx ) R
PlL,= ——— (D- — -19
(D* +2D +1)
—2sinx+2cosx
(20)

—2sinx+2cosx D? 2
- o D =-1%

2sinx—2cosx
4

= 5 (sin x — cos x)

1.1
Pl = 5 X s -’»‘E (sin x — cos x)

i

|
=5 (x sin x — sin x + cos x)

i

vy = CF + PL

1
y=(C, +Cx) e+ E (x sin x — sin X + cos X).
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METHOD OF UNDETERMINED COOFFICIENTS:

The particular integral of an n™ order linear non-homogeneous differential equation F(D)y=X
with constant coefficients can be determined by the method of undetermined coefficients
provided the RHS function X is an exponential function, polynomial in cosine, sine or sums or
product of such functions.

The trial solution to be assumed in each case depend on the form of X. Choose PI from the
following table depending on the nature of X.

SI.No. RHS function X Choice of Pl y,
1 Ke™ C e™
2 K sin (ax+b) or K cos (ax+hb) C, sin (ax+h)+ c, cos (ax+b)
3 K e sin (ax+b) c, e™sin (ax+b)+ ¢, e cos (ax+b)
or
Ke® cos (ax+b)
4 K x" where n=0,1,2,3..... Co +CX+C X2+t C X" HC X"
Kx" e®where n=0,1,2,3..... e €y +CX+CX° +.c+C X"
6 K x"sin (ax+b) a, sin(ax+b) + b, cos(ax+b)
or

K X" cos (ax+b) +a, .X.sin(ax+b) + b, x cos(ax+b)

+a,.x°.sin(ax+ b) + b,x* cos(ax+ b)

+a,.x".sin(ax+b) + b, x" cos(ax+ b)

7 K x" e*sin (ax+b) e™ a, sin(ax+b) + b, cos(ax+ b)
or

K X" % cos (ax+h) +a, .Xx.sin(ax+ b) + b,x cos(ax+ b)

+a,.x°.sin(ax+ b) + b,x? cos(ax+b)

+a, .Xx".sin(ax+b) + b x" cos(ax+b)

1. Solve by the method of undetermined coefficients (D°~3D+2)y = 4>

Sol: m*-3m+2=0=>(M-1)(M-2)=0 =>m=12
Y, =Ce* +c,e>
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Assume Pl y, = c,e> substituting this in the given d.e we determine the unknown coefficient as

(D*-3D+2)y = 4e*
9ce® —9ce® +2ce® = 4e*

2ce* =4e* =¢c=2

Ly, =2e*
d’y . dy . -
2. Solve F+ 2d—+4y = 2x? +3e by the method of undetermined coefficients.
X X

Sol: We have (D*+2D+4)y=2x +3¢”

AEism?*+2m+4=0 = m=

—212\/—12 =—2122\/§| 143

y,=e”* ll C0s+/3X +C, Sin \/§x_
Assume Pl in the form y=a,x*+a,x+a, +a,e”
Dy =2ax+a,—a,e”
D’y=2a, +a,e™
Substituting these values in the given d.e
We get 2a, +a,e " +2(2a,X+a, —a,6 ") +4(a,x* +a,Xx+a, +a,6 ) =2x" +3*
Equating corresponding coefficient on both sides, we get

2

X 4a,=2 = a1=%
1
X ! 4a,+4a,=0 :4(§)+4az=0

2+4a,=0=4a, =2 = a, :_%

C :2a+2a,+4a,=0

2(1)+2(—1j+4a3 =0=>4a,=0
2 2

ra,—2a,+4a,=3
3a,=3 = a,=1

-X

e

1 1
S Pliy ==x?—=x+e™*
Yo 2 2
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\
y =e~ € cos/3x+c,sin ﬁx;%xz —%x+eX

d’y

3. Solve by using the method of undetermined coefficients —- -9y = x* +e* —sin 3x
X

Sol: We have (D*-9)y =x* +e* —sin 3x
AEism*-9=0 = m’* =9 = m=13
y, =ce¥+ce™
Choose Plas y= Ax® +Bx? + Cx+ D + Ee” + F sin 3x + G cos 3x

y' =3Ax* + 2Bx+C + 2Ee®* + 3F cos3x — 3G sin 3x
y" =6AX+ 2B + 4Ee®* —9F sin 3x —9G cos3x

Substituting these values in the given d.e, we get

6AX+ 2B +4Ee? —9F sin 3x —9G cos3x —9 Ax® + Bx? + Cx+ D + Ee* + F sin 3x + G c0s 3x
=x* +e* —sin 3x

Equating the coefficient of

x*:—9A=1 = A:—%

x?: —9B=0 = B=0
X :6A-9C=0 36(—%)—9C=0

:>—3—9C=O :>9C=—g s 2
3 3

C :2B-9D=0=D=0

e”4E-9E=1= -5E=1= E:—%

sin3x: _9F ~9G=0 — F =~
18

cos3X:—9G-9G=0 = G=0

1, 2x 1, 1.
Sy, =X -~ ——e” +—sin3x
9 27 5 18

Complete solution y=y +Y,
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METHOD OF VARIATION OF PARAMETERS:

Consider a linear differential equation of second order

d2y+a Y ia y = o(x) (1)
Idx 2 =

de
where a,, a, are functions of “x’. If the complimentary function of this equation is known then we

can find the particular integral by using the method known as the method of variation of parameters.

Suppose the complimentary function of the Eqn. (1) is

CF. = C,y, + C, y, where C, and C, are constants and y, and y, are
the complementary solutions of Eqn. (1)

The Eqn. (1) implies that
YHaytay =0 -(2)

WHay +ay, =0 -(3)
We replace the arbitrary constants C,, C, present in C.F. by functions of x, say A, B respec-
tively,
y = Ay, + By, .(4)
is the complete solution of the given equation.

The procedure to determine A and B is as follows.

From Eqn. (4) y = (Ay + By;) +(A'y, +B',) ..(5)
We shall choose A and B such that

Ay, + By, =0 ..(6)
Thus Eqn. (5) becomes y; = Ay + By; (T)

Differentiating Eqn. (7) w.r.t. “x” again, we have

y' = (Ay'+Ay) )+ (A + BY;) .(8)

DEPT. OF MATHS/SIBIT Page 26



ENGINEERING MATHEMATICS -II 15MAT21

Thus, Eqn. (1) as a consequence of (4), (7) and (8) becomes
Ay +B'y; = o(x)

Let us consider equations (6) and (9) for solving

A’}‘l +B’_‘y‘3 = (6}
Ay +B'y; = o) .9)
Solving A" and B’ by cross multiplication, we get
AI = _}!E (D(x] "Biz :‘Jl q][l]
W W

Find A and B

v, O(x

Integrating, A= —_[ "ﬁf{ ]a‘x+ k,
Y, 0(x)

B - Jdemz

W
o o
w»n

where W = = V13— )

Substituting the expressions of A and B

y = Ay, + By, is the complete solution.
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1. Solve by the method of variation of parameters

2
dy

-+ VY = cosec x.

Solution. We have

(D* + 1)y = cosec x
AE. is m+1=0 = m=-1 = m=¢+i
Hence the C.F. is given by
: y. = Ccosx+C,sinx (1)
y=Acosx+Bsinx ..(2)

be the complete solution of the given equation where A and B are to be found.

The general solution is y = Ay, + By,

We have y, = cos x and y, = sin x

*

Y

—sin x and ) = cos x

W= V%V

. . " . ]
= COS X-COS X + 8in X-sin X = cosx + sinx = |

—¥, @l x) i ¥, 0l x)
— H-' L] - .ii-r
— BIAX - COSEC X COEX - COREC X
= I -+ = —l
A=~ 1., B =cotx

A= [(-)dxi+C,ie, A=-x+C,
B = J cotxdr+C, je, B= log sin x +

Hence the general solution of the given Egn. (2) is
¥ =Cycosx+ G sinx —xcos x+ sin x log sin x
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1. Solve by the method of variation of parameters

2
%+4}' = 4 tan 2x.
Solution. We have
(IF +4)y = 4 tan 2x
AE. is m*+4 =
where d(x) = 4 tan 2x
Le., m= = 2i

Hence the complementary function is given by

v =

y=

l’."l cos 2 + l'.“j sin 2x

Acos 2y + B sin v

be the complete solution of the given equation where A and B are to be found

We have V) =
W=
Then W =
Also, bix) =
A =

DEPT. OF MATHS/SIBIT

cos 2x and v, = sin Xx

~2sin2x  and ¥ =2ems 2x
LIE ELE TR R

Yh—kh

cos 2v -2 cos 2y + 2 sim 2x.sin 2x
2 (cos’2x + sin’2y)

2
4 tan 2x
— v, 0l x) ¥,0l x)
_ ZhA ap- 2
wo W
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—sin2x - 4tan2x —cos 2x-4tan2x
AN =———— B = .
2 2
ety
A = il ""., B =2 sin 2
cos2x
On integrating, we get
. cinln
A=-2 e dx.B = ZJ sin 2x dx
Jcosx
. ¢ 1-cos Z.rdx
08 2x

-2 [{sec 2x-cos 2x} dv

-2 { % log (sec 2x + tan 2x) - % sin 21}

e

e
Il

— log (sec 2x + tan 2x) + sin 2x + C|
B = ZJ sin 2x dx

2 (- cos2x)
b 2
B =-cos2x+C,
Substituting these values of A and B in Eqn. (1), we get
y = C,cos 2x + C, sin 2x — cos 2x log (sec 2x + tan 2x)

which is the required general solution.
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MODULE -2

DIFFERENTIAL EQUATIONS -1
SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS:

Let us suppose that x and y are functions of an independent variable ‘#’ connected by a system of

first order equation with D = —

dt
fiD) x + f,(D) y = 0,(1) (D)
8,(D) x + g,(D) y = 0,(1) .(2)

By solving a system of linear algebraic equations in cancelling either of the dependent variables
(x or y) operating (1) with g, (D) and (2) with f, (D), x cancels out by subtraction. We obtain a second
order differential equation in y. Which can be solved x can be obtained independently by cancelling
y or by substituting the obtained y (f) in a suitable equation.

Let us suppose that x and y are functions of an independent variable ‘#* connected by a system of

first order equation with D = —

dt
fiD) x + f(D) y = ¢,(1) (D
g,(D) x + g,(D) y = 9,(1) (2)

By solving a system of linear algebraic equations in cancelling either of the dependent variables
(x or y) operating (1) with g, (D) and (2) with f, (D), x cancels out by subtraction. We obtain a second
order differential equation in y. Which can be solved x can be obtained independently by cancelling
y or by substituting the obtained vy (f) in a suitable equation.
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or

dx dx
1. Solve —-7x+y =0, —=2x-J5y = 0.
e : it )

Solution. Taking D = e have the system of equations

D-Tx+v=10
-2x+D-5y=0

Multiply (1) by 2 and operate (2) by (D - 7)
Le., 2MD-Tx+2y=0
-2MD-7x+D-5D-T)y=0

Adding [(D-35D-T)+2lv=0 or
(D> - 12D +37)y=0

AE. is m—-12m+37=0
m-672+1=0
= m-6==+1i
m=6=+i
Thus y = ¢ (C, cos t + C, sin )

d’ .
By considering d_?_ 2x-35y =0, we get

1 { dy
_ | =5
1= Q[dr ]
1/d
=0
1
)

15MAT21

(1)
.(2)

.(3)

[Eﬂr (Cycost+C, sinrj]_ 5051 (€, cost +C, sim‘j}

{eﬁ‘ (- C,sint +C, cost) +6e™ (C, cost + C, sint)

~5¢" (C, cost + C, sint)
! 2 Sinf)

X = %{ { C sinf + G, cnsf)+€ (C cost +C, smf}}

1

Thus X = {{C +C,)e" cost+(C, - C,) €° smr} ()

2

(3) and (4) represents the complete solution of the given system of equations.
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dx _ _
2. Solve: " 2x — 3y, o =V 2x given x (0) = 8 and y (0) = 3.

Solution. Taking D = % we have the system of equations.
Dx=2x-3y: Dy=y-2x
ie., D-2)x+3y=0 (1)
X+ D-1)y=0 .(2)
Multiplying (1) by 2 and (2) by (D — 2), we get
2(D-2)x+6y=20
2D0-Dx+D-1)D-2)y=0

Subtracting, we get (D> = 3D -4)y =0

AE. is m*—3m—-4=0
m-4Hm+1)=0 = m=4, — 1
y=C e+ C, e’ (3)
dy
By considering E =y — 2x, we get
1 dy|
= —a¥V——
22V
1 o L
ie. X = E{C] ' +C et —(4C e -y e
= %(— 3C, e" +2C, ¢ (4

We have conditions x =8, y=3at =0

3C
Hence (3) and (4) become C, + C, = 3 and —7' + C, = 8.

Solving these equations, we get C, = 5, C, = -2
Thus x = 3¢ + 5S¢

y = — 2¢* + 5S¢ is the required solution.

dx dy
3. Solve: F;—Zy = cos 21, d—':+21 = sin 2t given that x = 1, y =0 att = 0.

d
Solution. Taking D = a e have the system of equations

Dx — 2y = cos 2t (1)
2x + Dy = sin 2t ..(2)
Multiplying (1) by D and (2) by 2, we have
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D> — 2Dy = D(cos 2t) = — 2 sin 2t
4y + 2Dy = 2 sin 2t

Adding, we get (D> +4) x= 0

AE. is m+4=0 = m==x2i
X= CI cos 2t + C2 sin 2f ..(3)
v
By considering E—z_‘r‘ = cos 2t, we get

1 [ dx 1
y= —|——cos2t
S 20 dt

ie., y = ! i{C'] cos2t + C, sin2t)— coszr-l
2| dt )
= %[—26‘, sin2f +2C, cos 2t — cos2t]
. P
y= —C;sin2f + [C2 —E] cos 2t (4)

Equation (3) and (4) represents the general solution
Applying the given conditions x = 1 at f =0
Hence (3) becomes, 1=C+0 = C =1
y=0attr=0
, | I
Hence (4) becomes, 0= tfl+{C2 _E] = (= )
Substituting these values in (3) and (4), we get

.

X = cos2t+—sin2t
2

y = —sin 2t

Which is the required solution.

SOLUTION OF CAUCHY’S HOMOGENEOUS LINEAR EQUATION AND
LEGENDRE'’S LINEAR EQUATION
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A linear differential equation of the form

dﬂ . dﬂ—l . d.ﬂ—2 . d'v
P Yy +a,  x-—+a,y=0b(x) (1)
no ' dx

-l Z n-12
X

Where a,. a,. a, ...a, are constants and ¢(x) is a function of x is called a homogeneous linear
differential equation of order n.

The equation can be transformed into an equation with constant coefficients by changing the
independent variable x to z by using the substitution x = ¢*or z = log x

Now z=logxy = —=—
g dx
. L4y d*y 1 dy
L x> T dz? x dx
_ Ldly 1 dy
T dz2 X dz
. edly _dly dy
e o’ T 4 dz
9 d2 !
ie. LY _pyy=DD-1)y
o
d"v
Similarly, == =DMD-1)D-2)y
dx
. d.vr_
ML o DD .. D-n+Dy
dx
Substituting th 1 £ x5 'y Y Eqn. (1), it reduces to a li
ubsiitutin e8¢ values o s I 1mn . . AL reduces (0 a lnear
g dx d‘_2 (il’"

differential equation with constant coefficient can be solved by the method used earlier.
Also, an equation of the form.

d™ 'y

]
Ry

+...any =(x) -(2)

(ax+b)" -d—ﬂ;+a1 (ax+b]"_| —
dx

where a,, a, .....a, are constants and ¢ (x) is a function of x is called a homogeneous linear differential
equation of order n. It is also called “Legendre’s linear differential equation™.

This equation can be reduced to a linear differential equation with constant coefficients by using
the substitution.

ax + b = ¢ or z =log (ax + D)
As above we can prove that

dy
ax+b)- —
(av +b)-5

= a Dy
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1 dly
(ax +b) .d-z =a*DD-1)y
X
n dn'lr'
(ax +b) 'd;" =a"DD-1DD-2)..D-n+1y
X

The reduced equation can be solved by using the methods of the previous section.

PROBLEMS:
1. Solve x* d y_ 2xﬁ— 4y = x*.
dx” dx
Solution. The given equation is
7 dz}-‘ dy
T -2x——-4y = ! 1
- de - ! @
Substitute x=¢ or z=logx
. d_"" 1 d7y
So that X— =Dy, x*—=DD-1y
dx dx*
The given equation reduces to
D(D-1)y-2Dy -4y = ()}
[D(D-1)-2D-4]y = ¥
ie., (D*-3D-4)y = ¥ -(2)
which is an equation with constant coefficients
AE. is m —3m-4 =0
ie., m-4Hm+1) =20
o m =4, -1
CF. is CF. = C" + Ce™
PL = ﬁ;e‘“ D—4
D -3D-4
1 i
= 3 94‘ Dr=20
(47 =344
1 s
= ap-3" D4
= 1 ze*
(2)(4)-3
= 1364‘
5
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.. The general solution of (2) is
v = CF. + PL
y=0C e+ Ce + gze“
Substituting & = x or z = log x, we get
1 _
y = Cx* + Cyx™! +§logx[_r4]
4
y = Cx* + G +x—logx
: X
is the general solution of the Eqn. (1).
yd’y  dy :
2. Solve x* %2 —_i'_xd%wy = (x + 1)
Solution. The given equation is
,d*y dy
= —3x—+4y = (x + 1)? (1
d® T dx e+ b )
Substituting x =¢€ or z=logx
Th & 28 ppo
en dr = v, P D-1)y
. Egn. (1) reduces to
DMD-1)y-3Dy+4y = (+ 1)
Le., (DP—4D +4)y = €% + 26" + 1
which is a linear equation with constant coefficients.
AE. is m*—4m+4 =0
ie., m-27%=0
m=272
CF. = (C, + Cp) &
PL = 1 (e +2¢7 +1) -(2)
(D-2)
ez: 2¢ e{l:
= —+ —+ .
(D-2)" (D-2) (D-2)
= PL, +PL, + PL,
PL, = —— D = 2)
(D-2)
1‘32:
= By (D!‘ = U:.
(2-2)
- (D = 2)
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= m [:Df' = O:I
72e’t
PL, = —
P.I 2" (D 1)
Aoy = 72 —
- (P-2)
2e°
(=1
PI, = 2¢
0z
PL, = — (D — 0)
. (D_ 2]..
_e 1
4 4
Pl = < e + 2¢° +l
. — 2 =L 4
The general solution of Eqn. (2) is
v = CF. + PL
2z 326’2: = 1
y = (C+Cyz)e™ + +2€*+E
Substituting e = x or z = log x, we get
,  x*(logx)’
v = (C, +C,logx)x~ +Q+2x+i
is the general solution of the equation (1).
d’y dy
3. Solve ¥ —5-+2x—=~12y = ¥ log .
dx dx
Solution. The given Egn. is
7 dz‘r' dy 2
X —+2x—-12y = x"log x (1
dx’ dx ' & M
Substituting x=¢ or z=logux sothat
N L NPT
XY— =Dy, an 7 = -1y
ax AR ) _
Then Eqgn. (1) reduces to
DMD-1)y+2Dy-12y = ¢
ie., (D> +D-12)y = ze% (2)
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which is the Linear differential equation with constant coefficients.

AE. is m +m-12 = 0
Le., m+4)(m-3 =10
g m=-473

CF. = Ce™ + Ce™
1 2z

Pl = —/————1¢
D*+D-12

o -

2 e

=€ 3 D—D+2
(D+2) +(D+2)-12 W=D

s

D> +5D-6

-
=i

—6+5D+D*| z

Sl | | o]

T 16 3] 6 |Te

.. General solution of Egn. (2) is

v = CFE +PL
2_
4 .oer 5
y = Ce * +C2€'1“—€ (z+-)
) 6 6
Substituting e* = xor z =log x, we get

: 5
y = C,x'4+C~,x3—x—(logx+—J
) - 6 6

3

G 3 X 5
b= —+Cx ——|logx+—
Y X - 6 ( g 6)

which is the general solution of Eqn. (1).
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Differential equations of first order and higher degree

If y=Ff(x), we use the notation % = p throughout this unit.
X

A differential equation of first order and n™ degree is the form
AP +AP +ADP 7 +.....+ A =0
Where A,, A, A,,...A are functions of x and y. This being a differential equation of first order,

the associated general solution will contain only one arbitrary constant. We proceed to discuss
equations solvable for P or y or x, wherein the problem is reduced to that of solving one or more
differential equations of first order and first degree. We finally discuss the solution of clairaut’s
equation.

Equations solvable for p

Supposing that the LHS of (1) is expressed as a product of n linear factors, then the
equivalent form of (1) is

p-f(xy) p-f(xy) .. p-f(xy) =0 (2
= p—fl(X,y) :0’ p—fZ(X,y) =0... p—fn(X,y) =0

All these are differential equations of first order and first degree. They can be solved by
the known methods. If F (x,y,c) =0,F, (x,y,c) =0,... F, (X, y,c) =0 respectively represents the

solution of these equations then the general solution is given by the product of all these solution.
Note: We need to present the general solution with the same arbitrary constant in each factor.

dy \’ d
1. Solve: y(—yJ + X—-Yy —y—x:O
dx dx

Sol: The given equation is
yp* +(x=y)p-x=0

_ (=) £A(x—y)* +4xy

p 2y
_(y=x)£(x+y)
p_
2y
ie.’ p=w or p=w
2y 2y
ie, p=1 or p=-x/y
We have,
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ﬂzljy:x+c or (y-x-c)=0
dx

Also,ﬂz_—X or ydy +xdx =0 :jydy+jxdx=k
dx vy

2 2

ie, L4+ X _k or Yy +x>=2k or (xX*+y*-c)=0

2 2
Thus the general solution is given by (y-x-c) (x* +y* —c) =0

2. Solve : x(y)*—(2x+3y)y' +6y=0

Sol: The given equation with the usual notation is,
Xp? —(2x+3y)p+6y=0

0= (2x+3y) £ \/(2x +3y)? —24xy

2X
IO:(2x+3y)4_r(2x—3y):2 Or3_y
2X X

We have

ﬂ=2:>.fdy =2jdx+c or y=2x+c or (y—-2x-c¢) =0

dx
Also ﬂ=3—y or %=3% = jﬂ=3 %-Fk

dx X y X y X

ie., logy=3logx+k or logy=Ilogx®+logc, where k =log x
ie., logy=log(cx’) = y=cx® or y—cx®* =0
Thus the general solution is (y-2x-c) (y-cx®) = 0

3) Solve P(P+Y) =X(x+Y)
Sol: The given equation is, p* + py —Xx(Xx+y) =0

—yi\/y2+4x(x+ y)
p:
2
—yi\/4x2+4xy+ y>  —y+(2x+Y)
p: =
2 2
—2(y+X)

ie, p=Xx or p= —(y +Xx)

2
We have,
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2
ﬂ:x: y:X—+k
dx 2

Also, dy =—Yy+X
dx

ie., %+ y =—X,isalinear d.e (similar tothe previous problem)

P=1Q=—xel™ —¢
Hence ye* = _[—xexdx+c
ie., ye* =—(xe* —e*)+c, integrating by parts.

Thusthe general solutionis givenby (2y —x* —c)| e"(y+x-1)—¢ |=0

Equations solvable for y:

We say that the given differential equation is solvable for y, if it is possible to express y
in terms of x and p explicitly. The method of solving is illustrated stepwise.
Y=f(x, p)
We differentiate (1) w.r.t x to obtain
dy dp
e p_F(X'y’d_x)
Here it should be noted that there is no need to have the given equation solvable for y in
the explicit form(1).By recognizing that the equation is solvable for y We can proceed to
differentiate the same w.r.t. x. We notice that (2) is a differential equation of first order in p
and x. We solve the same to obtain the solution in the form. ¢(x, p,c) =0
By eliminating p from (1) and (3) we obtain the general solution of the given

differential equation in the form G(x,y,c) =0

Remark: Suppose we are unable to eliminate p from (1)and (3), we need to solve for x and y
from the same to obtain.

X:Fl(p,C), y:Fz(p,c)
Which constitutes the solution of the given equation regarding p as a parameter.

Equations solvable for x

We say that the given equation is solvable for x, if it is possible to express x in terms of y

and p. The method of solving is identical with that of the earlier one and the same is as follows.
x=f(y,p)
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Differentiate w.r.t.y to obtain

%ziz F[X’y,d_pj
dy p dy

(2) Being a differential equation of first order in p and y the solution is of the form.
#(y,p,c)=0

By eliminating p from (1) and (3) we obtain the general solution of the given d.e in the form
G(x,y,c)=0

Note: The content of the remark given in the previous article continue to hold good here also.
1. Solve: y—2px=tan'(xp?)
Sol: By data, y =2px=+tan~'(xp?)
The equation is of the form y = f (x, p), solvable for y.

Differentiating (1) w.r.t.x,

dp dp
—X= X2p—
dx 1+x2p‘{ pdx+p}

. dp 1 dp
e, —p-2x—-= 2Xp—
P dx 1+x2p4{ pdx+p}

p-2p-2

2
e, —p- P =2x3—2[ F;4+1]
p

1+x2p4 1+x
o _ 1+x2.p4+p _2Xd_p p+1+x2p4
T2 | T 2 4
p 1+x%p

ie., logx+2log p =k

consider y = 2px+tan ™+ (xp?)
and xp2 =C

Using (2) in (1) we have,

y= ZM.xHan_l(c)

Thus vy =2 cx+tan_1c is the general solution.
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2. Obtain the general solution and the singular solution of the equation
y+px=p*x’

Sol: The given equation is solvable for y only.
y+ px = p°x*
Differentiating w.r.t X,

ie.,—2p=xd—por%:__cm: %J,l @
dx x 2p X 2°p

ie.,log x+log/p =k or log (x\/p)=logc=x,/p =c

Consider, y+ px= p2x4

Xy/p=C or x2p=c or p:c:/x2

Using (2) in (1) wehave, y + (c/ x2)x = (c2 / x*)x*

Thus xy +c = c?xis the general solution.

Now, to obtain the singular solution, we differentiate this relation partially w.r.t c,
treating ¢ as a parameter.

Thatis, 1=2cx or c=1/2x.

The general solution now becomes,

Xy + 4 = L
2X  4x?

Thus 4x’y+1=0,is the singular solution.

3) Solve y=p sin p + cos p

Sol: y=psinp+cosp

Differentiating w.r.t. X,
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dp . dp . _dp

=pcos p—+sin p——sin p—

P=P pdx+I pdx I pdx
. dp

|e.,1=cospd— or cosp dp=dx
X

= [cos pdp = [dx+cC

ie.,sinp=X+cC or x=sin p—c
Thus we can say thaty = p sin p + cos p and x =sin p-c constitutes
the general solution of the given d.e

Note:sin p=x+c= p=sin_1(x+c).
We can as well substitute for p in (1) and present the solution in the form,

y= (x+c)sin_1(x+c) +cossin_1(x+c)

4) Obtain the general solution and singular solution of the equation

y=2px+p’y
Sol: The given équation is solvable for x and it can be written as
2x =%— Sy
Differentiating w.r.t y we get
2_1_ydp_,  dp
o p oy |y

Ignoring (% + prhich does not contain % ,this gives
y

1+l%:0 or erd_p:

p dy y p
Integrating we get
yp =C........ (2)

substituting for p from 2 in (1)

y? = 2cx +¢?

5) Solve p? +2pycotx =y? .

Sol: Dividing throughout by p?, the equation can be written as
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2

y—z—ﬂcotx=1 adding cot® xtob.s
p p
2
y—z—ﬂcotx+cot2x=1+cot2x
p p
2
or (l—cotxJ = cosec?x
p
— Y _cotx =+cosecx
p
—~_ Y _cotx+cosecx
dy / dx
Dﬂz “NX_4x and dy __sinx
y cosx+1 y cosx-1

Integrating these two equations we get
y(cosx+1)=c, and y(cosx-1)=c,
general solutionis

y(cosx+1)—c y(cosx-1)—c =0

6) Solve: p® —4x’p—12x"y =0, obtain the singular solution also. .

Sol: The given equation is solvable for y only.

p?—4x°p-12x'y =0 ........... (1)_
p?+4x°p
= = f X,
y 1o% (x,p)

Differentiating (1) w.r.t.x,

2pd—p+4x5d—p+20x4p—12x4p—48x3y =0
dx dx

2 5
d—p(2p+4x5)+8x3(xp—p+—‘t’"°) ~0
dx 2X

(p+2x5)—dp :—Zp(p+2x5)
dx x
dp _2p _,

dx X

= Integrating log \/B— log x =k

= p=c’x® .. equation (1)becomes
¢’ +4c°x® =12y
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Setting ¢® = k the general solution becomes
k? +4kx® =12y

Differentiating w.rtk partially we get

2k +4x*=0

Using k = —2x° in general solution we get
x° + 3y = 0 as the singular solution

7) Solve p®—4xyp+8y* =0 by solving for x.

Sol: The given equation is solvable for x only.

p’—4xyp+8y* =0

p3 +8y2
4yp

Differentiating (1) w.r t.y,

X =

= f(y,p)

3p2@—4xy@—4yp.£—4px+16y =0
dy dy p

@(sz —4xy) = 4px —12y

dy

B 3 2 3 2
dp| 5,0 P78y }:[p +8y _124
dy p y

@_ZpS_SyZ}_ p3_4y2

day| p y

2d 3_qy?
__p(p3_4y2):—y/
p dy

2dp_1

pdy vy

2log p=Ilogy+logc

U sin g P = /ey in(1) we have,

cy+Joy —4xy,Jcy +8y? =0
Dividingthroughout by y+/y = y? we have,
c/c—4x/c+8,[y =0

Je(c-4x) = -8,y

Thus the general solutionisc(c — 4x)* =64y
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Clairaut’s Equation
The equation of the form y= px+ f (p)is known as Clairaut’s equation.

This being in the formy = F (X, p), that is solvable for y, we differentiate (1) w.r.t.x

dy dp ., dp

2 =p= — 4+ f —

dx P p+de+ (p)dx
dp

This implies that ol 0 and hence p=c
X

Using p =c in (1) we obtain the genertal solution of clairaut's equation in the form
y=cx+ f(c)

1. Solve: y= px+%

Sol: The given equation is Clairaut’s equation of the form y= px+ f (p), whose general solution
is y=cx+ f(c)

Thus the general solution is y:c:x+E
C

Singular solution

Differentiating partially w.r.t ¢ the above equation we have,
a
O=x-—

2

\F
c=,|—
X

Hence y =cx + (a/c)becomes,
y=+al/x.x+avx/a

Thus y2 = 4ax is the singular solution.
2. Modify the following equation into Clairaut’s form. Hence obtain the associated general

2
and singular solutions XP~ — Py +kp+a=0
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Sol : xp2— py + kp+a =0, by data

ie., xp2+kp+a: py

ie., y= p(xp;k)+a

. a
e, y= px+[k +—]
p
Here (1) is in the Clairaut’s form y=px+f(p) whose general solution is y = cx + f(¢)

Thus the general solution is y =cx+ (k + 3)
C

Now differentiating partially w.r.t ¢ we have,

a
O:X——2

C
c=+alx

Hence the general solution becomes,

y-k:2\/a_x

Thus the singular solution is (y - k)* = 4ax.
Remark: We can also obtain the solution in the method: solvable for y.

3. Solve the equation (px —y) (py + x) = 2p by reducing into Clairaut’s form, taking the
substitutions X = x?, Y = y?
2 dX

Sol: X=x = d—:2x
X
Y:y2 :%:Zy
Now, p:ﬂzﬂ dv - ax and let p:d—Y
dx dy dX dx dx
ie., p=2—1y.P.2x
X
€., p_WP

Consider(px—y)(py +X) =2p
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W W W

ie., (PX —-Y) (P+1) =2P

ie. [EPJYW} {Epﬁﬁ}z X g

ie., Y =PX —Z—Pis in the Clairaut's form and hence the associated genertal solution is

P+1

Yoox -2
c+1

2

Thus the required general solution of the given equation is y2 =CX —2—C1
C+

4) Solve px—y Ppy+x =a’p,use the substitution X = x*,Y = y?

Sol: Let X=x2:>d—X=2x

dx
Y :x2:>d—X:2y
dy
dy _dy v ox ay

Now, p=—"= and letP =—
dx dY dX dx dx

P:i.p.ZX or p:iP
2y y

JX

p=2Zp

N

Consider (px—y)(py+x) =2p

JX JX JX
VX o X - | | Y p ey |=2Y%p
{J\? NG NG
(PX-=Y)(P+1)=2P
y =px - 2P
P+1
Is in the Clairaut’s form and hence the associated general solution is

Thus the required general solution of the given equation is y? = cx? _2_c1
C+

5) Obtain the general solution and singular solution of the Clairaut’s
equation xp*® — yp® +1=0Sol: The given equation can be written as
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3
y= at 2+1 =>Vy= px+#isinthe0lairaut'sformy= px+ f (p)

whose general solutionisy =cx + f (c)

.. 1
Thus general solutionis y = cx +—
C

Differnetiating partially w.r.t.c we get
2 2 1/3
O=x-—=c= (—j
c X
Thus general solutionbecomes
2 13 X 2/3
y — (_j X +(_J — 22/3 y — 3X2/3
X 2
or 4y* =27x*
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MODULE —3
PARTIAL DIFFERENTIAL EQUATIONS

Introduction:

Many problems in vibration of strings, heat conduction, electrostatics involve two or more variables. Analysis of these
problems leads to partial derivatives and equations involving them. In this unit we first discuss the formation of PDE
analogous to that of formation of ODE. Later we discuss some methods of solving PDE.

Definitions:

An equation involving one or more derivatives of a function of two or more variables is called a partial differential
equation.

The order of a PDE is the order of the highest derivative and the degree of the PDE is the degree of highest
order derivative after clearing the equation of fractional powers.

A PDE is said to be linear if it is of first degree in the dependent variable and its partial derivative.

In each term of the PDE contains either the dependent variable or one of its partial derivatives, the PDE is
said to be homogeneous. Otherwise it is said to be a nonhomogeneous PDE.

e Formation of pde by eliminating the arbitrary constants
e Formation of pde by eliminating the arbitrary functions

Solutions to first order first degree pde of the type

Pp+Qa =R
Formationof pde by eliminating the arbitrary constants:
(1) NG Solve:
27 =—+ y_

Sol: Differentiating (i) partlallt))/ with respect to x and v,

oz 2x 1 1oz p
2—=—0Fr—=——=—
oX a a®~ Xox X

200 2y 1 1oz q
y

y b*  b® yox
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Substituting these values of 1/a® and 1/b? in (i), we get
(2)z=(+a) (y’ +b)
Sol: Differentiating the given relation partially
(x-a)? + (y-b) 2 + 22 = K2...(j)

Differentiating (i) partially w. r. t. x and y,
Z z
(x—a)+2 2% 20,(y—b)+2 2 =0
OX oy
Substituting for (x- a) and (y- b) from these in (i), we get

2 2
22{1+(2—)Z(J +[%le }z k> This is the required partial differential equation.

(B)z=ax+by+cxy ..(I)
Sol: Differentiating (i) partially w.r.t. xy, we get

oz ..
—=a-+cyv..(l
- +cy..(ii)

%le b+cx..(iii)

It is not possible to eliminate a,b,c from relations (i)-(iii).
Partially differentiating (ii),

0°z
oxoy

0z 0%z
a=—-Y
oX = oXoy

= C Using this in (i) and (iii)

2
b:g—x 0z

oy  oxoy
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Substituting for a, b, c in (i), we get

{az 0%z } {82 0%z } 0%z
Z=X—-y +y| —-X +Xy

oX = oOXxoy oy  oXxoy oxoy
oz 0’z
Z=X—+Y——-Xy ——
ox ~ oy oxoy
X2 y2 Z2
(S)a_2+F+?_l

Sol: Differentiating partially w.r.t. x,

2X 2z oz X Z 0z
—2+—2—=O,0I’—2=——2—
a c° OX a c° OX

Differentiating this partially w.r.t. X, we get

i__i(@)lza_% (2]
a® ¢’ |lox ox’ [ et |\ox X’

- Differentiating the given equation partially w.r.t. y twice we get
zoz (a2 0%z z0z (éz) _ 9%z

——=|— |t == | T3

yoy \oy oy X ox \ox OX

Is the required p. d. e..

Note:

As another required partial differential equation.

P.D.E. obtained by elimination of arbitrary constants need not be not unique

Formation of p d e by eliminating the arbitrary functions:

1) 2=+ Yy

Sol: Differentiating z partially w.r.t. x and y,
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0z 0z
=—=f'(x*+y).2x,q=—= f' (X2 +y?).2
=" (x*+y%).2x,q 5 (x“+y%).2y
p/g=x/y or yp-xqg=0 istherequired pde
(2) z=f(x+ct) +g (x-ct)

Sol: Differentiating z partially with respect to x and t,

2
@: f'(x+ct)+g'(x—ct),a—§: f"(x+ct)+g"(x—ct)
OX oX
Thus the pde is
0’z 0°z
—2+—2:O
ot oX
@) x+y+z=1(*+y*+ 7%

Sol:Differentiating partially w.r.t. x and y

142 2 fr(x*+y*+ 22)[2x+22g
OX OX |

0z 0z
1+ —=f'(x*+y? +22){2y+22—
oy oy

1+(zlox)  1+(0z/y)

2f' (X +y?+2%) = =
X+2z(0z/ox) y+z(ozloy)

(y=2)Z 4 (2= = x=y is the required pd
x & is the required pde

4) z = f(xylz).

Sol: Differentiating partially w.r.t. x and y

a _ f-(ﬁj{z_ﬁﬁ}
OX z )z z% éx
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f(xyj oz Ox oz /oy

z (y/2){1- (x/z)(az/ax} (x/2){L-(y/z2)(cz/ oy}
@

6x_yay

or Xp = yq is the required pde.
(5) z =y* + 2 f(1/x + logy)

Sol: 2 Z2y+2f (1) x+log y){l}
oy y

g=2f'(1/x+|og y){—iz}

OX X

0z 0z
2f' M/ x+logy)=-x>—=y|l —-2
( gy) ™ y(ay y]

Hence X 2 02, yg—Zy2
ence X 2 Yy

(6) Z =x®(y) +y y(X)
0z NG/ .
Sol : v oY)+ Yy '(X);— = x@'(y) +w(X)
X oy
Substituting  @'(y) and y'(X)

0%z oz
ymw—x&-y@—vﬂW+wA@]

527 o7 57 is the required pde.
=X—+Yy——
oxoy X oy

Xy
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7) Form the partial differential equation by eliminating the arbitrary functions from
z = f(y-2x) + g(2y-x) (Dec 2011)
Sol: By data, z = f(y-2x) + g(2y-X)

&
OoX
oz

q—5= f'(y-2x)+29'(2y - x)

p =-2f'(y-2x)-9g'(2y -x)

0’2 _ ,cn p
rza——4f (Y=2X)+9"(2Y = X).eerererennne @

X2

0%z
OXoy

S =

=—2f"(y=2%)=20"(2y = X))

t:%: f'"(y=2X)+49"(2y = X)uveeerrrenenn, 3)

Dx2+(2)=2r+s=61"(y—=2X).ccceeururnn. 4
(2)x2+(3) =25+t ==-3F"(y—2X).c0cene.... (5)
Nowdividing(4) by (5)we get

2r+s
25+t

=—2 0or2r+5s+2t=0

2 2 2
Thus 26—§+5 oz +28—§=Oistherequired PDE
ox®  oxoy oy

LAGRANGE’S FIRST ORDER FIRST DEGREE PDE: Pp+Qq=R

(1) Solve: yzp + zxq = xy.

Ox_dy dz
yZ X Xy

Sol :

Subsidiary equations are

From the first two and the last two terms, we get, respectively
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%:d_)z'or xdx—ydy=0 and d—zy:d—yzor ydy —zdz = 0.

y
Integrating we get x*-y*=a, Yy’—z°=h.
Hence, a general solution is
O(x*y* y*-2°) =0
(2) Solve: y?p - xyq = x(z-2y)

dx dy dz

SOI:—ZI

y: —xy  x(z-2y)

From the first two ratios we get
X*+y*=a from the last ratiostwo we get

dZ+5—2

dy 'y
from the last ratiostwo we get

dz z

@ + ; =2 ordinary linear differential equation hence

yz-y’=b
solutionis @(x*+ V% yz—y>) =0

(3) Solve : z(xp — yq) = y* —X°

sol: ¢y _ 0z
X -7y Y —X

—=d—y, or xdy+ydx=0 or d(xy)=0,

on integration, yields xy =a
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xdx +ydy +zdz=0 x*+y*+z°=b
Hence, a general solution of the given equation
d(xy,x2+y2+22)=0

-7 I-X_ X-—
(4) Solve: J p+ q= y
yZ

sol : Y- dx == dy = X _d;
y—2 Z—X X—Yy

xdx +ydy+zdz=0 ...(i)
Integrating (i) we get
X+y'+z°=a
yzdx +zx dy +xydz=0 ...
Dividing (ii) throughout by xyz and then integrating,
we get xyz=Db
O(X*+y*+7°,xyz) =0
(5)(x+22)p + (4z2x—y)q = 2X" +y

dx dy dz

Sol : = =
X+2Z 4zx—-y 2X°+Yy

(1)

Using multipliers 2x, -1, -1 we obtain 2x dx —dy —dz =0
Using multipliers y, X, -2z in (i), we obtain

y dx + x dy — 2z dz = 0 which on integration yields
xy—-z°=b ....(iii)

5) Solve

. . . - . - T
z,, =sinxsiny forwhichz, =-2sin ywhenx=0and z=0 when y is an odd multiple of >
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Sol: Here we first find z by integration and apply the given conditions to determine the arbitrary

functions occurring as constants of integration.

The given PDF can be written as ol =sin xsin y
ox\ oy

Integrating w.r.t X treating y as constant,

% =siny jsin xdx+ f(y)=-sinycosx+ f(y)

Integrating w.r.t y treating x as constant
Z=-C0SX _[sin ydy+ _[f (y)dy+g(x)
z= —cosx (—=cosy)+F(y)+g(x),

where F (y) = j f(y)dy.

Thus z=cosxcosy+F(y)+g(x)

Alsoby data,%:— 2siny whenx =0. U singthisin (1)
—2siny=(-siny).1+ f(y) (cos0=1)

Hence F(y)= jf (y)dy = j—sin ydy=cosy
Withthis, (2) becomes z = cos xcos y +cos y + g(X)

U sin g theconditionthatz =0 if y =(2n +1)%in (3) we have
T T
0 =cos xcos(2n +1)E+cos xc(2n +1)E+ g(x)

Butcos(2n +1)% =0.and hence0=0+0+g(x)

Thus the solution of the PDE is given by
Z=CO0S X COSy + COSy

Method of Separation of VVariables

1) Solve by the method of variables 3u, +2u, =0, giventhatu(x,0) = 4e™

Sol: Given 363_;(+26_u =0, @

OX
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U=XY where X=X(x);Y =Y (y)

ou ou
3—(x 2—(xy)=0
aX(y)+ aX(y)

:>3Yd—x+2Xd—Y:0:id—X=_—2d—Y
dx dy X dx Y dy
Letid_x: K :>3d—x=kdx
X dx X

=3log X =kx+c, = log X =%+cl

ke
=> X =e?d
Let 29Y _y o dY _—Kdy
Y dy Y 2
- e,
= logY = Kdy+02:>Y:e2

Substituting (2) &(3) in (1)

K E—X}rq +C,

U=e £3 ?
Also u(x,0) =4e”*

) 5
e, de*=Ae ‘% =4 =Ae3
Comparing we get A=4 & K=-3

Xy

U=4de [3 Zj is required solution.

2) Solve by the method of variables 43—“ +%u =3u, giventhatu(0, y) = 2
X

Sol: Given 4a_u+a_u =3u
ox oy

Assume solution of (1) as

u= XY where X =X (x);Y =Y (y)
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B B
4&(XY)+5(XY)_3XY

dx dy X dx Y dy
Let 20Xy g 1dY
X dx Y dy

Separating var iables and int egrating we get

=log X :%+cl, logY = 3-k y+¢c,

kx
4

G _
— X =¢ 3-k y+c,

and Y =e

kx
—+3-ky —+3-ky
Hence u=XY =e%"% ¢4 = Ae where A=¢ 2*®

put x=0 and u = 2e*

The general solutionbecomes

2 =Ae* V= A=2and k=-2
.. Particular solutionis

X5
u=2e2

APPLICATION OF PARTIAL DIFFERENTIAL EQUATIONS:
ONE DIMENSIONAL HEAT EQUATION:

Consider a heat conducting homogeneous rod of length L placed along x-axis. One end of the
rod at x=0(Origin) and the other end of the rod at x=L.
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Assume that the rod as constant density p and uniform cross section A. Also assume that the rod

is insulated laterally and therefore heat flows only in the x direction. The rod is sufficiently thin
so that the temperature is same at all points of any cross sectional area of the rod.

Let u(x, t) be the temperature of the cross section at the point x at any time t.

The amount of heat crossing any section of the rod per second depends on the area A of the cross

. . : . ou
section, the thermal conductivity k of the material of rod and the temperature gradient —

I.e., the rate of change of temperature with respect to distance normal to the area.
Therfore g, the quatity of heat flowing into the cross section at a distance x in uint

time is g =—kA(%uj per second

X

Negative sign appears because heat flows in the direction of decreasing
temperature (as x increases u decreases )

g, the quantity of heat flowing out of the cross section at a distance x+&x
(i.e, the rate of heat flow at cross section x+6x )

au

=—kA
0, —-r[ 2

j per second
X+IX

The rate of change of heat content in segment of the rod between x and x+6x must be equal to
net heat flow into this segment of the rod is

ou ou
-9, = kAK&j —(&) }persecond ............. (1)
X+OX X

But the rate of increase of heat in the rod

ou
SPOASX— i, 2
pRAOX— (2)

Where S is the specific heat, p the density of material.

From (1) & (2)
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spAsx L~ ka (a_j (a_j
at 8x X+JX aX X

(&) (&)
ou K OX Jyisy  \OX J,

orsp—-=
P Sx

Taking limitas 6x — 0, we have

o ,0u __ou k du
sp—=k—or—=——
ot aE At spox
2
ora—u =c? a—g ........................... (3) where c? LS
ot OX Sp

Is known as diffusivity constant.

Equation (3) is the one dimensional heat equation which is second order homogenous and

parabolic type.

Various possible solutions of standard p.d.es by the method of separation of

variables.

We need to obtain the solution of the ODEs by taking the constant k equal to

i) Zero ii) positive: k=+p?

Thus we obtain three possible solutions for the associated p.d.e

iii) negative: k=-p’

Various possible solutions of the one dimensional heat equation ut:czuxx by the method of

separation of variables.

2
Consider au_ c? 6—2
ot OX

Let u= XT where X=X(x),T=T(t) be the solution of the PDE

Hence the PDE becomes

o0 XT 262 XT dr  , d?*X
=C — OrX—=c¢ >
ot OX dt dx
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Dividing by ¢*XT we have Zid—T _1d >2<
cT dt X dx

Equating both sides to a common constant k we have

2
id )2(:|( and Zid_T =k
X dx cT dt
dT
d*X — —ckT =0
e —-kX =0 and gt

D?-k X=0 and D-c’k T=0

2
Where D? :(;j—z in the first equation and D :% in the second equation
X

Case (i) : let k=0
AEs are m=0 amd m?=0 amd m=0,0 are the roots

Solutions are given by

T=ce”=c, and X = ¢,x+c, €% = c,x+c,
Hence the solution of the PDE is given by
U= XT= ¢, C,X+C,

Or u(x,t) =Ax+B where c1¢,=A and c;C3-B
Case (ii) let k be positive say k=+p?

AEs are m —¢”p?=0 and m*-p®=0

m= ¢’p? and m=+p

Solutions are given by

T=ceP and X =c ™ +c,e ™
Hence the solution of the PDE is given by

. 272 . T
u=XT =c,e® "' .(c,e™ +c,e™)
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Or u(x,t) =c e P*(A’e™+Be ™) where ¢;’c,’=A’ and ¢;’c3’=B’
Case (iii): let k be negative say k=-p

AEs are m+ ¢?p?=0 and m*+p®=0

m=- ¢’p®> and m=+ip

solutions are given by

T=c,e“" and X =c’,cospx+c’,sin px

Hence the solution of the PDE is given by

“ 2.2 " w o
u=XT =c,e“" .(c,cos px+c ,sin px)

u(x,t) =e P (A" cos px+B" sin px)

2
1. Solve the Heat equation Zt—u =c’ %given that u(0,t)=0,u(1,0)=0 and u(x,0)= 100x/I
X

| |
Soln: b, _2 IlOOx sin X dx == 220 Ixsinmdx
(I I 1< 5 I
x.—cos X _gjn X
I nz/l nz/l

n+l

200 -1 200 -1 " 200 -1
= cosnr — =

Nz 1V/4 nz

The required solution is obtained by substituting this value of b,

» 200 —1 "t Rt oy
Thus u(x,t) = e sin
(1) nzzll nz 12 I
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2
2. Obtain the solution of the heat equation Zt—u =c’ g—l: given that u(0,t)=0,u(l,t)and
X

2TX . I
I—anSXSE
u(x,0) =f(x)where f(x)= oT |
— l=x in=<x<I
I 2
2 T
Soln bn=ij(x)sm—dx
0
2 E2Tx ! nzx
b“:T 6[ If x)sm—dx
2
T|% . nax, ! _nzX
=— Ixsm—dx+j (I—x)sin——dx
; I i I
2
8T . nr
bn:nz—ﬂzsm—

The required solution is obtained by substituting this value of b,

222
—-n“z°ct nzX
sin——

8T & 1 nz
Thus u(x,t)_—ZZ—zsm—e
:l

2
3. Solve the heat equation Zt_u = Z—L: with the boundary conditions u(0,t)=0,u(l,t)and
X

u(x,0) =3sin 7 x
Soln: u(x,t) =e P (A COS PX+B SiN PX)..ververerrerererernenne. )]
Consider u(0,t)=0 now 1 becomes
0=e"*(A) thus A=0
Consider u(1,t)=0 using A=0 (1) becomes
0=e""* (Bsinp)
Since B#0,sinp=00r p=n 7
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u(x,t)y=e  (Bsinnzx)

= —n2x2c2% .
In general U(X,t) = Z b.e sinnzx

n=1

Consider u(x,0)= 3sinnzxand we have

3sinnzx =M, sin zx+Db, sin 2zx +b, sin 37x

Comparing both sides we get b, =3,b, =0,b, =0

We substitute these values in the expanded form and then get
u(x,t)=3e " ' (sinzx)

ONE DIMENSIONAL WAVE EQUATION:

Consider a tightly stretched elastic string of length | stretched between two points O and A and
displaced slightly from its equilibrium position OA. Taking O as origin and OA as x axis and a
perpendicular line through O as Y- axis. We shall find the displacement y a function of the
distance x and the time t.

We shall obtain the equation of motion of string under the following assumptions.

i) The string is perfectly flexible and offers no resistance to bending

i) Points on the string move only in the vertical direction, there is no motion in the
horizontal direction. The motion takes place entirely in the X 'Y plane .

iii) Gravitational forces on the string is neglected.

Let m be the mass per unit length of the string. Consider the motion of an element PQ
of length &s. Since the string does not offer resistance to bending, the tensions T;

At P and T, at Q are tangential to the curve.

Since the is no motion in the horizontal direction, some of the forces in the horizontal direction
must be zero.

i.e., - Ticosa + TocosB=0 or Ticosa= T,cosp=T=constant.....(1)
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Since gravitational force on the string is neglected , the only two forces acting on the
string are the vertical components of tension - T;Sina at P and T,sinf at Q with up[ward
direction takes as positive.

Mass of an element PQ is m ds. By Newton’s second law of motion , the
equation of motion in the vertical direction is

Resultant of forces = mass *acceleration
2

y ).

TosinP - TisSina =m5s¥ ..............

2 . T,sing Tssina mdsd’y
— gives — = 5
1 T,cosp T cosae T ot

m5saz_y
T ot?

ortan f—tana =

o’y T
~ 22— tanB-tan
ot>  mos P “

Fy_ T (@) _(ﬂ)
ot mas|\ax ), \ox),

(-os=0oxtoa first approximationand tan « , tan S arethe slopes of the curve of the string at xand X+ &x)

2,42
ﬂzl OX X+0X X X

ot> m OX

Taking Limitasox— 0

2 2 2 2
a_g'zla_g or 6—3/:026—32/ ................... (3) wherec? T
ot® m ox ot OX m

Which is the partial differential equation giving the transverse vibrations of the string .

Equation (3) is the one dimensional wave equation which is second order homogenous and
parabolic type.

Various possible solutions of the one dimensional wave equation Uy =c2uy by the method of
separation of variables.

2 2
Consider Zt—l; =c’ Zx_l;

Let u= XT where X=X(x),T=T(t) be the solution of the PDE
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Hence the PDE becomes

o> XT  ,0° XT d’T  ,d*X

—=C > or X > =C >

ot OX dt dx
1 d°T 1 d?X

Dividing by ¢?XT we have -
any c’T dt? X dx?

Equating both sides to a common constant k we have

2 2
id >2(:k and zid—-zr =k

X dx cT dt
2 d’T T
C(ij)z( —kX =0 andF_C KT =0

D?-k X=0 and D?*-c’k T =0

2 2
Where D? :% in the first equation and D? :% in the second equation
X

Case(i) : let k=0

AEs are m=0 amd m”=0 amd m=0,0 are the roots
Solutions are given by

T=ce”=c, and X = ¢,x+c, €% = c,x+c,
Hence the solution of the PDE is given by

U= XT= ¢, C,X+C,

Or u(x,t) =Ax+B where c1¢c,=A and c;C3-B

Case (ii) let k be positive say k=+p?

AEs are m —¢%p?=0 and m?-p®=0

m= ¢’p? and m=+p

Solutions are given by
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T =c,e" andX =c,e™ +c e ™

Hence the solution of the PDE is given by

u=XT =ce?*.(c,e™ +c,e ™)

Oru(x,t) =c,eP*(A’e™+B e ™) where c;’c,’=A’ and c¢;’c3’=B’
Case (iii): let k be negative say k=-p

AEs are m+ c?p?=0 and m?+p®=0

m=- ¢’p?> and m=+ip

Solutions are given by

T=ce*" and X =c’,cospx+c,sin px

Hence the solution of the PDE is given by

" 2.2 " " -
u=XT =c,e " .(c,cos px-+cC ,Sin px)

u(x,t) =e <Pt (A" cos px+B" sin px)

1. Solve the wave equation ug=c’u, subject to the conditions u(t,0)=0 ,u(l,t)=0,

‘;—“ x,0 =0 and u(x,0) =uesin®(x/1)

., . nzx  nzxct
Soln: u x,t =ansmTcos|—
n=1

Consider u(x,0) =ugsin®(x/l)

2. . NzX
u x,0 =ansm|—
n=1

.3 TX 2 . NzX
uosm3|—=2bnsmT
n=1
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3u X U 37X 27X 37X
—2sin ———°sm—_blsmT+b sin— I +b33|n|—

I 4 |
comparing both sides we get

b = 3u°b—0 b3—— b,=0 b, =0,

Thus by substituting these values in the expanded form we get

3Uy X _ wct U, . 37X __ 3xct
u(x, t)— 2 sin TcosT—ZsmTcosT

2. Solve the wave equation ug=c’uy subject to the conditions u(t,0)=0 ,u(l,t)=0,

%u x,0 =0 when t=0and u(x,0) =f(x)

Nz n
Soln: u x,t _Zb sm—I cos,—7|rCt
n=1

Consider u(x,0)=f(x) then we have

Consider u(x,0) = Z b sm@

F(x) = Zb sm@

The series in RHS is regarded as the sine half range Fourier series of f(x) in (0,1) and hence

n

|
:TZI (x)sm%dx
0

Thus we have the required solution in the form

N X nzct
u xt _Zb SmTCOSI—
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MODULE-4

INTEGRAL CALCULUS
DOUBLE INTEGRAL

The double integral of a function f (x, ) over a region D in R’ is denoted by ”f (_x,y)dxdy
D

Let f (x, y) be a continuous function in R* defined on a closed rectangle
R={x,a<sx£band cLy<d}

d
For any fixed x € [a, b] consider the integral Jf (x.y)dy.

The value of this integral depends on x and we get a new function of x. This can be integrated

[ pd .
depends on x and, we get L U{ i (*‘?)d"}d‘ This 1s called an “iterated integral”.

Similarly, we can define another

f Lb f(x,y)dx

For continuous function f (x, y), we have

dy

Hf(r-}’,lfif-iv :T jf(-m‘,!dv dr=} Tf(-n.v)ﬂ‘x dy
R a |rc ¢ |a

If f (x, y) is continuous on a bounded region § and S is given by

S={xyasx<band ¢ (x) y=0, ()}, where 0, and §, are
two continuous functions on [a, b] then )
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b | 8,y
“ e ‘y’il _
J.[f(xy)dxdv - J- -I-f(xay‘]d\'- dx }"—%(K}
5 a | o/
The iterated integral in the R.H.S. is also written in \
the form §
b 0,(x) &"
Jrix Jf(x,_'.-'}a‘y y=0,(x)
a  ox)
Similarly, if S={x,yec<ysd 8 b
and ¢, (y) <x <0, (3} Fig. 3.1
d ¢:|'||| .
then .” fxy)dvdy = .[: “th.[}'l f(-m')dxlm

5
If § cannot be written in neither of the above two forms we divide S into finite number of sub-

regions such that each of the subregions can be represented in one of the above forms and we get
the double integral over S by adding the integrals over these subregions.

PROBLEMS:

¥

.F &
1. Evaluate: I = L Jﬂ 1}22 dy dx.

Solution I

1}
—_—
I-
[
=

dx (Integrating w.r.t. vy keeping x constant)
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I 2
2. Evaluate: -[:: -L xy dy dx.
Solution. Let [ be the given integral
S Y S|
Then. I = nx 1 JI ¥ d_‘rj dx
1 27 1
— _[x Y dx.=§.|-xd1=i
0 2 : 2 Jo 4
c b a .
5. Evaluate: J J J [I‘) +y’ +23)r1'2 dy dx.
—c -h —a
c b a
Solution I = J J _[ (_I“ +y + z‘}dz dy dx
x=-¢ y=-b z=-a
Integrating w.r.t. z, x and v — constant.
c b T 3 a
= J J 12?+}32+"€1 dy dx
x=—r y=-b = dz=—a
c b 3 3
5 5 a a
- J J x'(a+a}+}"(a+a}+[7+? dy dx
x=-c y=-b -
€ ] 9 30
= J J 2ax? + 2ay? + a 'd_vdx
x=-c y=-b 3 4
Integrating w.r.t. y, x — constant.
< | 3 A3 b
= J 2axly + =2 . 2a” _‘,-—l dx
x=—c y=-b
c I 3
= j za.xl(b+b;:+%a[b-‘ +b3)+2%(b+b}1dx
c T 3 3
= _[ dax’h + 4ab + da b-ldx
3 3 3 .
) dab da’b
= |4ab| = |+ () + ()
3 3 ' 3 '
3 3 3
- 4ab[% 4 Aab -(2c}+4ﬂqb(2c}

3
8abc
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Evaluation of a Double Integral by Changing the Order of Integration

In the evaluation of the double integrals sometimes we may have to change the order of integration
so that evaluation is more convenient. If the limits of integration are variables then change in the
order of integration changes the limits of integration. In such cases a rough idea of the region of
integration is necessary.

Evaluation of a Double Integral by Change of VVariables

Sometimes the double integral can be evaluated easily by changing the variables.

Suppose x and y are functions of two variables u and v.

Le., x =x(u v)and y =y (4, v) and the Jacobian
E_)_x
J - d(x,y) _ |du
~d(wy) |y
du

Then the region A changes into the region R under the transformations

x=x(v)and y=y (u, v)

Then ”f[x,y}dxdy = ij(u,vjjdudv
A R

It x=rcosB,y=rsinf

dx  ox

;o d(x.u) _ ar 06| _ |cosb-rsin®| )
T a8 | W sinf rcosf
Jr 06
”f(x,j.-')dxa‘y - ”F(r,@)rdrde. A1)

A R

Applications to Area and Volume
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1. ”dﬂf dy = Area of the region R in the Cartesian form.

R
2 ”f-df d% = Area of the region R in the polar form.
R

3 J“d.x: dydz = Volume of a solid.
v

4. Volume of a solid (in polars) obtained by the revolution of a curve enclosing an area A about
the initial line is given by

V= ”mf sin 8- dr db.

4

n

. If z=f(x, y) be the equation of a surface § then the surface area is given by

i

+[H—F] dx dy

dy

r

JH' +[j_x]
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Type 1. Evaluation over a given region

1. Evaluate ,”'W dxdy where R is the triangular region bounded by the axes of coordinates
R

v WX Y
and the line —+=— = 1.
a b

X y
'_=l

Solution. R is the region bounded by x = 0, y = 0 being the coordinates axes and ';+ b

being the straight line through (0, a) and [O.b(l —f))
: aj

X
when x is held fixed and y varies from 0 to b[ I ‘—]

a
g X, 1
a b
y
L ]__
= b a
5 G = b[l—i]
.

Il

—
sk

| — T

ﬁ m|>«'

S

I

-

J{.\)ﬁdtd\' x=0-l ‘=(.).-' l x;
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2. Evaluate ” xydxdy over the area in the first quadrant bounded by the circle ¥’ + v = d”

[ 2 0} 1
a |yat-o VXY =a
22 2
Solution ”.xy dxdy = J JD‘ dy | dx =y =a -x
x=0| y=0 Il'ﬁ
- y= ‘\la X
- “'raz_r?
¥
= X |— dx
2 0 L

Y 4
(2 2 2 2 2
_ 2 7‘ X +y =a
2
17 .
— Q

0
l_ax2 .x4-|a
= Sl —-—
217 2 4[0 Fig. 3.3
1t | _d
T 2l2 4| 8

Type 2. Evaluation of a double integral by changing the order of integration

a Wax
. . 2
1. Change the order of integration and hence evaluate J Jx' dy dx.
0 0
Solution y = 2+ax
=3 ¥ = dax

when x = a on y* = 4ax, y* = 4d’

Il
|+
[
=

= y
So,ony=2yax,y=2a whenx=a

The integral is over the shaded region.
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Y4 Y

2

X= y_

y= E‘Ifﬁ - 4a

(a, 2a)
77 .
- , Y » X
a Eﬁ.-"a

J J‘_r) dy dx

I
I —
L b—
Ta e
[
=
-

00 ¥=0 ¥
=
4a
2a 34
y
0 i
Zag g :ﬁ Y
- [|5-e)
0 a
) £ - }‘? 2
T3 192a-‘><?0

2a* 27 a*

3 192%7
_ [3_1] A
3 21) 7
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| “'2—.1’
2. Change the order of integration and hence evaluate J J —— dydx.
0 Ix, + y?
Soluti 2y
olution y= 2-x?
’ v . Ya
= yV=2-x
9 3 (U!E} y=X
= r4+y=2 (1,1)
This circle and y = x meet if x* + x* = 2
W=2=x=1 2
So, (1, 1) is the meeting point. Hy =h2x
5 »
| y2-4
X

Now I:J J ———dydx

0 3 YAy

J2 )

X
= J dx dy

42 4 o2
y=0 =0y T

}-' forO0=sy<1

where ¢ (y) = l 2—v for 1< y<y2

(Note that x = ¢ (y) is the R.H.S. boundary of the shaded region)
So, the required integral is

JJ * a‘xrh+f j dx dy

1.010"\,'|I +" y=1 .rl[l'\u'x +"’1

| V2 h_ 2
T2 T [ 2 2|V
= [xh +y‘] dy + hx +y 1 dy
o 0 - o -
0 |
]_. _ + - _
= [(V2y—y)dv+ | (V2 -y|dy

- -
n 1
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2 1 2 W2
— (V2 -1)2 [y _ Y
= [{_\E 1) 5 LJ{vz} > 1
x"IE -1 = = 3 2 1
= 3 +\,“2(_\"I2—]J—[E—EJ
1
p— _\.ll_.E-
Type 3. Evaluation by changing into polars
1. Evaluate J.J.E_["'z”:}dx dy by changing to polar coordinates.
00
Solution. In polars we have x = r cos 6, y = r sin 0
xX*+y = rand dx dy =rdrdd
Since x, y varies from 0 to o Y 4
r also varies from 0 to o
In the first quadrant ‘8’ Pxy)
varies from 0 to /2 :
T2 w
_r:
Thus 1= | [erdrde i
8=0 r=0 N
0 X
Put ro=t rdr= a
2
t also varies from 0 to ee
e
-t
1= | Je 5 de
6=0 t=0
! T[— e do
)
a=0
-1 2
=5 Jo-1)ae
0
| 2
= +— |1.d8
2|
+1 ¢ 72 +1 ® T
> % 2 2 4
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2. Evaluate J J}-‘ \/12 +y?* dxdy by changing into polars.
00

f 2
a @Y
. f 2, 2
Solution I = J J.}-‘\x +y° dxdy
y=0  x=0

X= \jaz —vy2orx?+y = d*is a circle with centre origin and radius a. Since, y varies from 0 to a

the region of integration is the first quadrant of the circle.

In polars, we have x = r cos 6, y = r sinf

Y4y =
Le., rr=a
= r=a

Also x =0, y = 0 will give r = 0 and hence we can say that r varies from 0 to a. In the first
quadrant 8 varies from 0 to /2, we know that dx dv = r dr d6

a T2
] = ' Jrsinﬁrrdrd@
r=0 8=0
a 2
_ Jr-‘ sin 8 dr d®
r=0 6=0

= | r(~cos ngﬁ dr

1
= L=
|
-

[
p—
o
|
—_—
T —
=
=
Il
1
| =
 I——
=1
Il
=
=

g

A
- -

Triple Integrals:

The treatment of Triple integrals also known as volume integrals in R® is a simple and straight
extension of the ideas in respect of double integrals.

Let f(x,y,z) be continuous and single valued function defined over a region V of space. Let V be
divided into sub regions &v,,dV,......0V, into n parts. Let (X, Y,,Z.) be any arbitrary point
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within or on the boundary of the sub region oV, . From the sum

S=D F (X Vi )V o (1)
k=1

If as N — oo and the maximum diameter of every.

Sub region approaches zero the sum (1) has a limit then the limit is denoted by I.”f (X, y,z)dv
\%

This is called the triple integral of f(x,y,z) over the region V.

For the purpose of evolution the above triple integral over the region V can be expressed as an
iterated integral or repeated integral in the form

177 0y, 2ydrclydz = bjﬁ) {NXIY) f(x,y, z)dz}dy}dx

a| g(x) Lw(xy)

Where f(x,y,z) is continuous in the region V bounded by the surfaces

z=z2=w(XY), 2=¢(XY),y=0(x),y =h(x),x =a,x =b. the above integral indicates the three
successive integration to be performed in the following order, first w.r.t z, keeping x and y as
constant then w.r.t y keeping x as constant and finally w.r.t.x.

Note:

e When an integration is performed w.r.t a variable that variable is eliminated completely
from the remaining integral.

e If the limits are not constants the integration should be in the order in which dx, dy, dz is
given in the integral.

e Evaluation of the integral may be performed in any order if all the limits are constants.

e If f(X,y,z) = 1 then the triple integral gives the volume of the region.

1. Evaluate ﬁi[xyzzdxdydz
001

Sol : Tﬁx 7%dxdydz I xyz }dydz
001

12
_oo

12 222
“‘{Zyz - }dydz
00

1
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ir 2.2 7P
:jyz—yz}dz
oL 4 0
2,272
_ {Byz}dz
ol 4 0

2. Evaluate _”I(X2 + Yy +2%)dxdydz
000

a

Sol : ei[aj[a:f(x2 +y? +z%)dxdydz = ]-?{—+y X+ 2 x} dydz
000 00 0
3

j a_ +vyla+ zza}dydz
J1 3

o}

J

0
e
[ ?+y a+z°a [dy]dz
0 0

J

0

3 a
2y, Mﬂzay} iz
| 3 0
i
a‘z az azz3 |

3 0

a’
__+_
3 3 3
=a’

3
a—+—+a Z }dz
3
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3. Evaluate I
0

a m {az_xz_yz
J. J' Xy zdxdydz
0 0

a2 [\a2--y?
Sol : I:I j< j Xy z dz }dy dx

0 0 0

) a2 Xy22 aZ*XnyZ

—I j 5 dy dx

0 0 L 0

aa?_x?

=I J' %(az—xz—yz)dydx

0 0

Ja2-x®

4. Evaluate m.xyz dxdydz over the region R enclosed by the coordinate planes and the
R

plane x +y + z=1
Sol: In the given region, z varies from0to 1 —x -y

For z-=0, y varies from 0 to 1 — x. For y=0,x varies from 0 to 1.

N
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:%j‘ {f[(l X)2y —2(1—X) y*+y }dy}dx

0

=%J’ {[ 1-x)*(1—x)? ——(1 X)L-x)° += (1 X)* }}

1 1| @-x°
= 46[)((1 x)* dx—ZA[ 30 L
1

720
Change of variable in triple integrals

Computational work can often be reduced while evaluating triple integrals by changing

the variables X, y, z to some new variables u, v, w, which related to x,y,z and which are

such that the
x o x
ou ov ow
Jacobian J =M: ﬂ ﬂ ﬂ #0
o(u,v,w) |ou ov ow
2 a2 a
ou ov ow

It can be proved that

ﬂjf (x,y, z)dxdydz
= [[[#(u.v. w)Idudvdw........Q2

R is the region in which (x,y,z) vary and R* is the corresponding region in which
(u,v,w)vary and ¢(u,v,w)=f x(u,v,w), y(u,v,w), z(u,v,w)
Once the triple integral wrt (X,y,z) is changed to triple integral wrt (u,v,w) by using the

formula(l), the later integral may be evaluated by expressing it in terms of repeated

integrals with appropriate limit of integration

DEPT. OF MATHS/SJBIT Page 87



ENGINEERING MATHEMATICS -II 15MAT21

Triple integral in cylindrical polar coordinates

Suppose (x,y,z) are related to three variables (R, ¢, z) through the the

relation x = Rcos¢, y = Rsin ¢, z = zthenR, ¢, z are called cylindriocal polar coordinates;
In this case,

oX OX OX
R o oz
7 W VAR R

o(R,¢,z) |OR o0¢ o1
0z 01 o1
R 09

Hence dxdydz has to be changed to R dRd¢ dz

Thus we have

jj j f (x, y, z)dxdydz
= jjj¢(R,¢, z)RdRd ¢dz

R*is the region in which (R, ¢, z) vary, as (x,y,z) vary in R

#(R,¢,2) = T (Rcos¢g,Rsing, 2)

Triple integral in spherical polar coordinates

Suppose (x,y,z) are related to three variables (r,8,¢) through the relations
X=rsin@cosg,y=rsin@sing,z=rcosd. Then (r,8,¢) are called spherical polar

coordinates.

PROBLEMS:

1) If R is the region bounded by the planes x=0,y=0,z=0,z=1 and the
cylinder x* + y* =1.Evaluate the integral ”jxyzdxdydz by changing it to cylindrical
R

polar coordinates.
Sol: Let (R, ¢, z) be cylindrical polar coordinates. In thegiven region, R varies from 0

to 1, ¢ varies from O to % and z varies from 0 to 1.
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2)

J[ryzdxdydz = J:zo Eo fzo(R cos¢)(Rsin ¢)zR dR dg dx
= ERSdR L%sin¢cos¢£zdz

1 ERng{—coszq
4 2

=%ER%R

z
2

0

1

16
Evaluate j”xyzdxdydz over the positive octant of the sphere by changing it to
R

spherical polar coordinates.

Sol: In the region, r varies from 0 to a, @ varies from O to % and ¢ varies from O to.

The relations between Cartesian and spherical polar coordinates are

X=rsindcosg,y=rsindsing,z=rcosé.....(1)
Also dxdydz = r?sin@drdad¢

We have x> +y*+2* =a’....(2)

IJIxyzdxdydz = E:O Eo fzorsin@cos;ﬁrsin@sin¢rcos€r2sin@drd9d¢

_ Liorssin39cosesin¢drd<9d¢

6
=——6 coszz —cos0
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Application of double integrals:

Introduction: we now consider the use of double integrals for computing areas of plane and
curved surfaces and volumes, which occur quite in science and engineering.

Computation of plane Areas:

Recall expression

b ¥2(X) d % ()

[fOoy)dA= [[fyydxdy = [ [ f(xy)dydx =] [ f(x y)dxdy
A R a y;(x c X

b Y, (x) d Xz(Y)Y( ) .
[dA=[faxdy = [ dydx=] [ dxdy......... )
A R a v (x) ¢ x(y)

The integral J'dA represents the total area of the plane region R over which the iterated integral
A

are taken . Thus (1) may be used to compute the area A. nNote that dx dy is the plane area
element dA in the Cartesian form.

Also dedy = ”rdrde, rdrd@ is the plane area element in polar form.
R R

Area in Cartesian form

Let the curves AB and CD be y, = f,(x)andy, = f,(x). Let the ordinates AC and BD be x=a and

x=b. So the area enclosed by the two curves and x=a and x=b is ABCD. Let p(x,y) and
be Q(x+J X, y+Jy) two neighbouring points, then the area of the small rectangle PQ=6 x5y

A Y2
Area of the vertical strip = |imi5x5y =5X Idy

sy—0 vy, v

Since 6 x the width of the strip is constant throughout, if we add all the strips from x=a to x=b
we get

Yo b Y2
The area ABCD = |imzh:5x Idy:_‘-dx jdy
Y1

5y—0 a a Vi
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by,
Area= j j dxdy

ay

Area in Polar form:

y

1. Find the area of the elllpse b—z =1 by double integration.
a’

Soln: For the vertical strip PQ, y varies fromy =0to y = E\/a2 — x* when the strip is slided
a

from CB to A, x varies from x=0 to x=a

) ik
Therefore Area of the ellipse=4 Area of CAB=4 j f dydx
x=0 y=0

bVaz x2

]' jdy dx = 4j ﬁrdx

I mdx 42[ xal - xt %sinl(xﬂa

5 2

2
2

_ 4P [a—sin -11} b2
2 a

0

= zab

N|9’
N-|§\

a
2. Find the area between the parabolas y?=4ax and x* = 4ay

Soln: We have y?=4ax ..................... (1)

and X2=4aY. e Q).

Solving (1) and (2) we get the point of intersections (0,0) and (4a,4a) . The shaded portion
in the figure is the required area divide the arc into horizontal strips of width oy

y2

X varies from p, 1a to Q./4ay and then y varies from O, y=0to A, y=4a..

Therefore the required area is
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4a 4a J‘W

4a

"3
0 >~
2 0
3
3 12a
32, 16, 16,
3 3 3

Computation of surface area (using double integral):
The double integral can made use in evaluating the surface area of a surface.

Consider a surface S in space .let the equation of the surface S be z=f(x,y) . it can be that surface
area of this surface is

Givenby s= ”{H@ij +[2;J ] dxdy

Where A the region representing the projection of S on the xy-plane.
Note that (x,y)vary over A as (X,y,z) vary over S.

Similarly if B and C projection of S on the yz-plane and zx - plane respectively , then

1

1+(azj + [2] dydz
0z oy

N |

and
1

2 273
1+(@j +[@) dzdx
0z OX

% 7
I I
> i v—

1) Find the surface area of the sphere x*+y*+z°=a®.

Soln: the required surface arc is twice the surface are of the upper part of the given sphere,
whose equation is
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1
z=a’-x*-y? 2 2)0
1
this, gives,@ = a’-x"-y* 2 -2x
OX

—X

N

a?—x2—y?

similarly,@ = y

N~

a>—x2—y?

(62)2 (azjz a’
Sl = | = =3 3
OX OX a - —x"-y

hence, the, required, surface, area, is

s= 2{]{1{%} (Z;J ]ldxdy ZH{ﬁ}ldxdy

Where A the projection of the sphere on the xy-plane . we note that this projication is the area
bounded by circle x*+y?=a®.hence in A ,© varies from 0to2

And r varies from Oto a, where (r, ©) are the polar coordinates. put x=cos 0 ,y=sin 0 dxdy=rdrd 60

rdrd@ = Zzidex T
0

27 a
a r
5.85=2 —_ N 'Y
QL[)r_J(’)\laz—rz 01/az—r2
27 a 27
=2a Ide —%\/a2 —r? ;z 2a _[d@ & 32a° P77 =4m’
0 0
2) Find the surface area of the portion of the cylinder x*+z%=a® which lies inside the
cylinder x*+y*+=a’,

Soln: Let sy be the cylinder x*+z°=a’ and s, be the cylinder x*+z’=a® for the cylinder
0z X 0z

X 70y
2 2 2 2 2
so that 1+(8z) +(@] I A, L £ 2a :
X oy z z a’-x

The required surface area is twice the surface area of the upper part of the cylinder S; which lies
inside the cylinder x?+y?=a®. Hence the required surface area is
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s_zﬂ{u@ij (2;] ] dA= 2jjm

Where A is the projection of the cylinder S; on the x y plane that Ilies with in the cylinder

S,:x2+y?=a2 In Ax varies from —a toa and for each x,y varies from —~/a’ — x*tova® — x2

a a —x

a
s=2 | | ——
x=—ay__\[a?_y2 a —X
§7a2—x2

= 2a I m e
=2a fm I\/a2 —x? dx

=4a Idx=4a|<ja =4a - ¢a_=8a’

dydx

dx

Volume underneath a surface:

Let Z=(x,y)be the equation of the surface S. let P be a point on the surface S.let A denote the
orthogonal projection of S on the xy- plane . divide it into area elements by drawing thre lines
parallel to the axes of x and y on the elements oxdy as base ,erect a cylinder having generators

parallel to QZ and meeting the surface S in an element of area os .the volume underneath the
surface bounded by S, its projection A on xy plane and the cylinder with generator through the
boundary curve of A on the xy plane and parallel to OZ is given by,

V= Hf &y dxdy = ”dedy

X2 y2 Z2
1) Find the volume of the ellipsoid —2+b—2+—2 =1
a c

Sol: Let S denote the surface of the ellipsoid above the xy-plane .the equation of this surface

X2 yz 72 -
?+b—2+c—2:1¢>0/
is
2 y2 2 -
or,z:c( _?b_ZJ =f&y._
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The volume of the region bounded by this surface and the xy-plane gives the volume v;of the
upper half of the full ellipsoid .this volume is given byv, = ”(( yﬂxdy
A

Where A is the area of the projection of S on the xy plane .

Note that A is the area bounded by the elllpse y_ =1

e
jj(l————J dxdy = c@zab)

The volume of the full ellipsoid is 2v;.thus the required volume is v = Zénabc = ﬂ7zabc

Volume of revolution using double integrals:

Let y=f(x) be a simples closed plane curves enclosing an area A. suppose this curve is revolved
about the x-axis. Then it can be proved that the volume of the solid generated is given by the
formula .

V= ” 2nydA = HZnydxdy
A
In polar form this formula becomes v = _Urz sin dd&dr

1) Find the volume generated by the revolution of the cardioids r =a (1+cos0) about the
intial line.

Sol: The given cardioids is symmetrical about the initial line 6=0.therfore the volume
generated by revolving the upper part of the curve about the initial line is same as the volume
generated by revolving the whole the curve .for the upper part of the curve 0 varies from 0 to
7 and for each 0 , r varies from 0 to a(1+cos0),therefore the required volume is
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- a(@l+cosd)
Vv = _fZﬂrzsin adrd @

=0 r=0

. 3 ad+cosé _
= 27 [sin 04| = deo
o 3 (0]

3 7 3
— 27;‘3 j(+c059:sin od o
(@]

_ 27a® [(—n— COSQj:|” _8 =
(0]

3 4 3

Computation of volume by triple integrals:
Recall the expression,
bl h& (s&y_
If &y, zdv= ”_[f &Y,z dxdydz = j{ _[((, y,zﬁz}dy dx
v R al g« |o&y_

As a particular case ,where f(X,y,z)=1,this expression becomes

bhe& g&.y_
_[dv: _U j dxdydz = I _[ Idzdydx ............................. (1)
v R ag& &y
The integral J'dv represents the volume V of the region R. thus expression (1)may be used to

compute V.

If(x,y,z) are changed to (u,v,w)we obtained the following expression for the volume,

fdv = [[[oxdydz = [[[jdudvdw ..., 2)

Taking (u,v,w)= (R,0,2) in (2)

We obtained jdv: J.J' J'Rdeqﬁdz ................ 3) an expression for volume in terms of
\% R

cylindrical polar coordinates.

Similarly jdv:_mrzsin adrdédg an expression for volume in terms of spherical polar
v R

coordinates.
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PROBLEMS:

1) Find the volume common to the cylinders x*+y?=a® and x*+z*=a*
Soln: In the given region z varies from —+a?-x* to +va®—x* and y varies from
—va?-x% to ++a*—x? .for z=0, y=0 x varies from -ato a

Therefore, required volume is

a a2 x2  Jaix?
V:x=-[a J' I dzdydx

=2 j[\/az —x? y} dx

—a a2z xz
:2_[ Ja? —x22+a? — x? dx

a X3 a
=4_[ a® —x° dx=4[a2x—?}

A5

=4|2a®—

2) Find the volume bounded by the cylinder x?+y?=4 and the planes y+z=3 and z=0

Soln: Here z varies from 0 to 3-y, y varies from (-va=¢ ) to (va— ) and x varies from -2 to 2
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.. Required volume

2 4-x2 3y 2 4-x2 >
= fdx | dy [dz=[dx [ dyz
2 _Ja_ 0 -2 1—x2 0
_x2 4-x
= de 4J' 3-y dyzzj'dx(3—y—j
-2 A_x2 -2 _J4-x?

2 2
=6 j\/4—x2dx = 6B\/4—x2 +gsin‘1 ﬂ
-2

-2

_6| 2sin 2 _ 2sin"! —Ej 12| 24+ 7 2127
2 2 22

BETA AND GAMMA FUNCTIONS

In this topic we define two special functions of improper integrals known as Beta function and
Gamma function. These functions play important role in applied mathematics.

Definitions

1. The Beta function denoted by B (m, n) or B (m. n) is defined by
|

B (m,n) = J X! (]—x}n_] dx,(m,n>0) (1)
0

2. The Gamma function denoted by T (n) is defined by

n-1

r(n) = JI € dx -2
n

DEPT. OF MATHS/SJBIT Page 98



ENGINEERING MATHEMATICS -II 15MAT21

Properties of Beta and Gamma Functions

1. B(m.n) = pn m
o xm—l o X”_]
= J m+R dx:J m+n dx
2. B (m n) = ) (1+x) ¥ ) (14 + ..(3)
72
3. B (m,n) = 2 J sin®"~" 8 cos ™" 0.0 (4
0
if2
) J sin”' B cos ™' 0.do
0
w2
4. [5{;”] q_+11 = 2 J sin” B cos? @ (0
2 2 o
w2
= 2 J sin? 0 cos” 6 d6 ..(5)
0
3. Fn+1) = n T'(n ...(6)
6. ['(n+1) = n! if nis a+ve real number.

Proof 1. We have

I

[ - ax
0

B (m, n)

|
[-o""[-(-x]" ax
0
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Since J fx)de = J fla-x)dx
0 0
!
I A (B TR
0
!
_ J 1= x)" dr
0
= B (n.m)
Thus, B (m.n) = p (n, m)

Hence (1) is proved.
(2) By definition of Beta function,
|
n-|

B (m,n) = J " 1-x)" dx

0

1 _
Substituting x = —— then dx = — dt when x =0, t = o and when x = 1,1 = 0.
1+t (1+1)

Therefore,

0 m-| n-|

1 1 -1
B = [|—| |1- [ _dt
. 1+t 1+t “[4-”‘
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n 1 -1 p rr—l[ 1
;[{]—H‘] [l+t} 'l(]+r}2m‘

j.ﬁ:—l

= _[ o =] +a—1+2 dt
o (1+1)
- rn—] - IH—]
B (nl? H) = s P dr = R
{{HIJ 'rl;(1+_-}
- 3‘_m—l
Similarly, f (n, m) = _[ ———dx
) (1+x)
Since, B (m,n) = P (n, m) we get
- n—1 - m—1
X X
(m, n) = — _dr=| ———dx
B I_I; {] N Jf::lm-l-] 1_[ [1 n x}-]mﬂz

(3) By definition of Beta functions

I
I?l [:m. ") _ J xm—l (]_x'-l.'r—] dx

0
Substitute x = sin? 8 then dx = 2 sin 8 cos B 40
Also when ¥y =0,686=0
h 1. 6 T
when x =1.8= >
w2
; 5 am-1 SR o
B (m, n) = J (sin®6) - (1-sin®6) -2sinBcosO dd
i}

n2

2 J sin”"@ ( cos’ G)H -sinBcosh g6
D

w2

= 2 J sin”™ 2 Bcos™ > BsinBcos do
0

T2
2 J sin”™ ' Bcos™ ' B do
0
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Since, p (m, n) = B (n, m), we have
T2

2 -[ sin®™ ' 6cos> '8 g6
0

B (m, n)

2
= 2 _[ sin” ' 0cos”™ 0 40
0

(4) Substituting 2m —1 = pand 2n — 1 = g

p+1 g+1 .
So that m = » n=——— in the above result, we have

Fa

[R]

B[p_H q—H] — 2 | sin”Bcos? B 40

L)

2 2

— 2 | sin?Bcos” Bdb

(1) Substituting g = 0 in the above result, we get

Tf2 Tf2

. p+] l . p _ P
|5[ . ,21 - zl sin Bd@—QJncos 6ds-

(2) Substituting p = 0 and g = 0 in the above result

(5) Replacing n by (n + 1) in the definition of gamma function.

I (n)

J x"e™ dx
0
where n = (n + 1)

Fn+1)= |X € dx

=

On integrating by parts, we get

=]

[x" (- )]: —_[ (—~e™)-n X" dx

0

Cin+1)

= []+n_[ e*x"'dy = nr(n)
0

DEPT. OF MATHS/SJBIT Page 102



ENGINEERING MATHEMATICS -II 15MAT21

since lim L=0. ifn =0

X—oa E;'.l

Thus, F'n+ 1) =nl(n), |forn>0

This is called the recurrence formula, for the gamma function.

(6) If n is a positive integer then by repeated application of the above formula, we get
F'in+1) = nlin)
=nln-1+1)
nn— 1) (n— 1) (using above result)
nn-1m-2)T(n-2)

=nin-1)n-2....10I()

=nl (1)
But ra = [ 2 dx
0
=], =-0-n=1
Hence I'(n+ 1) = n!, if n is a positive integer.

For example
r)y=1"=1,1r3=21=2Tr4)=31=6

If n is a positive fraction then using the recurrence formula " (n + 1) =n " (n) can be evaluated
as follows.

(1) I' y | = r = 3 I 7

5 3 '3

(2) I 7 r 3 2]

7 5 (5

—_ - _|_] - — ]_' -

(3) I > r 5 3 2]
_ E.E.l.rH
222 2

:' ’
_ ‘_-r[l]
8 2

DEPT. OF MATHS/SIBIT Page 103



ENGINEERING MATHEMATICS -II 15MAT21

Relationship between Beta and Gamma Functions

The Beta and Gamma functions are related by

[(m) I}
B (mn) = M+ A7)
Proof. We have  T'(n) = J.x”'] € dx
0
Substituting x = £, dx = 2t di, we get
F -l
L) = J(_r) ot
0
_ EJ.IE”"-E'I: d
0
[ = 2] e i
0
Replacing n by m, and ‘x” by 'y’, we have
['(m) = EJ }'3’"".9'-"3 dy (i)
0

Hence
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|1 Y } ”:r—] ’*m—

= 4| |e d dy i)

= e, B
—_—— B

We shall transform the double integral into polar coordinates.
Substitute x = r cos B, y = r sin 6 then we have dx dy = r drdb

As x and y varies from 0 to e, the region of integration entire first quadrant. Hence, 6 varies

I

from 0 to ) and r varies from 0 o e and also x* 4 ' =

Hence (iif) becomes,

= Wl

In-1

4J Je”'! (reost)™ (rsin)™" - rdbdr
r={) 6=

o) T

= | =

w

Ymtn)-l . In-1 -1 :
4Jr' v drxjsm” Bos™ Bb )
r=0 0
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= w

Substituting r* = t, in the first integral. We get,
T 17 i -
2{m+n)-1 —r - m+n—1 !
_[ r e’ dr = > J t e dt
r=0 0
1 [(m+n)
= 3 )

and from (iv),

=R s e

sin™ '@ cos™ ' 0 db = % B(m,n)

Therefore (iv) reduces to I'(m)T (n) = T (m+n)B(m.n)

I'(m)T (n)

Thus, fp(m, n = [ (m+n)

- Hence proved.

Corollary. To show that F[%] = Jn

. | I
Putting m = n = 2 in this result, we get

.
22l s T

But ria = 1
IR R
B 55| = 'lr[EJJ .(8)

ta | =

Now consider B (m, n) = ZJ sin®™ ' 6 cos™" ' 8 40
0
Now we have from (8), LH.S.

n

T
Bl=.~| - 2 | in’6cos’ 846 =2[6]? =
25| = __[sm cos —-[]n—ﬂ.’
0
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= ...
Prove that J a dx = ——= where a and b are positive constants.
0 2\/blog a P
1.
Sol:
w 2 oo —bx*
Now. J'D a—iu dx — L { Elngu} since g = €<=

= _{bloga)x®
= J e IR gy
0

dt
Substitute (b log a) x* = t, dx = m
So that Vi
0 al. X = -‘J{m
dt
2/t Jbloga

oo 2 = dt
J e'bxd_xzjfr' =
0 0 24t \/bloga

-1

= —— r‘ e’ dt
'E:rlc:-ga 0

- rr_ - df
0

2./b log a

_ ()
o)

NELS

2 \/bloga |
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- s / (m+ 1
Prove that _[ x"e™ dx = . r
0 (m+1) oon
2 na n
|
. [t \n
Substitute ax® = t so that x = l—]
a
1 -
Then dx = — 1
na"
Therefore,

Jm xfrr E—mf“ dx -
0

]. where m and n are positive constants.

na®

{m+1)

1 = Al
= J f € ! dl‘
]

[m+1)in
Ha

1

m[m+ljhr

r m+l}
n
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MODULE —5
LAPLACE TRANSFORM

INTRODUCTION
= Laplace transform is an integral transform employed in solving physical problems.

= Many physical problems when analysed assumes the form of a differential equation

subjected to a set of initial conditions or boundary conditions.

= By initial conditions we mean that the conditions on the dependent variable are specified

at a single value of the independent variable.

= If the conditions of the dependent variable are specified at two different values of the

independent variable, the conditions are called boundary conditions.
= The problem with initial conditions is referred to as the Initial value problem.

= The problem with boundary conditions is referred to as the Boundary value problem.

2
d
Example 1: The problem of solving the equation del + d_i + Y = X with conditions y(0) = y’

(0) =1 is an initial value problem.
_ o d%y dy _
Example 2: The problem of solving the equation 3W + 2& +Yy =C0SX with y(1)=1,

y(2)=3 is called Boundary value problem.

Laplace transform is essentially employed to solve initial value problems. This technique
is of great utility in applications dealing with mechanical systems and electric circuits.
Besides the technique may also be employed to find certain integral values also. The
transform is named after the French Mathematician P.S. de’ Laplace (1749 — 1827).

The subject is divided into the following sub topics.
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LAPLACE TRANSFORMS

Definition and Transforms of Convolution Inverse
Properties some functions theorem transforms
Definition:

Solution of
differential
equations

Let f(t) be a real-valued function defined for all t >0 and s be a parameter, real or

complex. Suppose the integral Je_St f(t)dt exists (converges). Then this integral is called the
0

Laplace transform of f(t) and is denoted by L[f(t)].

Thus, LfR] = |&* f ()t
0

1)

We note that the value of the integral on the right hand side of (1) depends on s. Hence
L[f(t)] is a function of s denoted by F(s) or f(s).

Thus,

LIf(D)] = F(s) (2)

Consider relation (2). Here f(t) is called the Inverse Laplace transform of F(s) and is
denoted by L™ [F(s)].

Thus,

L™ [F(s)]

= £(t)

Suppose f(t) is defined as follows :

-

ft) = )

\

fi(t), 0<t<a
fo(t), a<t<bh

fat), t>b

©)

Note that f(t) is piecewise continuous. The Laplace transform of f(t) is defined as

DEPT. OF MATHS/SJBIT

Page 110



ENGINEERING MATHEMATICS -II 15MAT21
LIf)] = [e*f )
0

a b @0
= [ f(dt+ [e ™ f,(t)dt+ [e ()t
a b

0
NOTE: In a practical situation, the variable t represents the time and s represents frequency.
Hence the Laplace transform converts the time domain into the frequency domain.

Basic properties
The following are some basic properties of Laplace transforms:

1.Linearity property: For any two functions f(t) and ¢(t) (whose Laplace transforms exist)

and any two constants a and b, we have
L [af(t) + b ¢(5)] = a L[f(H)] + b L[¢()]
Proof :- By definition, we have

L [af (t) + bo(t)] = wje‘“ k() +bs(t)dt = awje-st f(t)dt +b e g(t)dt

=a L[f(H)] +b L[o(t)]
This is the desired property.
In particular, for a=b=1, we have
LLT(®) + o(®] = L [f({O] + LLo(V)]
and fora=-b =1, we have L [(t) - ¢(t)] = LI[f(t) ]- L[¢(D)]

2.Change of scale property: If L L[f(t)] = F(s), then L[f(at)] = iFG), where a is a

positive constant.

Proof: - By definition, we have
L[f(at)] = I e f (at)dt (1)
0
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Let us set at = x. Then expression (1) becomes,

S

L f(at) = {je[] f (x)dx
0

This is the desired property.

3. Shifting property: -Let abe any real constant. Then

L [e™'f (t)] = F(s-a)

Proof :- By definition, we have

L [ef (1)] = Ie 1@ at
0

: j e f (t)dt
0

= F(s-a)

This is the desired property. Here we note that the Laplace transform of * f(t) can be written
down directly by changing s to s-a in the Laplace transform of f(t).

LAPLACE TRANSFORMS OF STANDARD FUNCTIONS
1. Let a be a constant. Then

0

¥ -st at _ —(s-a)t
L[] = oje e®'dt = e dlt

0

0

e—(s—a)t B 1
" —(s-a)|, s-a’

s>a

Thus,
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L(e™)] = é

In particular, when a=0, we get

L(1) = $>0

1
S H
By inversion formula, we have

_ 41
Ll =eatLl_:eat
S—a S

eat +e—at
2. L(coshat)= L —

1% Hose _ i
_ _jl (s—a)t +e (S+a)tdt_
2 0
Let s>|al. Then,

—(s-a)t —(s+a)t |®
L(coshat) = 1 45 S
2| —(s—a) -—(s+a)

0 Y 2

S
Thus, L (cosh at) = , S>|a
(coshat) = 77, s>l

and so

L‘l( > ] = cosh at

pal _g-at a
3. L(sinhat):L( ]: 2 _ .2, s>l

Thus,
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a
L (sinh at) = s2 _g2 " s> |a

and so,

B 1 ) _sinh at
s?—a’ a

4. L (sin at) = fe’“ sin at gt
0

Here we suppose that s > 0 and then integrate by using the formula

ax

Ieaxsinbxdx: ——— ksinbx—bcosbx_
a“+b -

Thus,

a
L (sinh at) = , $>0
( ) s’ +a’

and so

L‘l( 1 j _sinhat
s?+a’ a

st
5. L (cos at) = J.e * cos atdt
0

Here we suppose that s>0 and integrate by using the formula

ax

jeaxcosbxdx: ——— [cosbx +bsinbx_
a‘+b i
S
Thus, L (cos at) = , $>0
( ) 52 1+ 32
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> = COS at

6. Let n be a constant, which is a non-negative real number or a negative non-integer. Then
0
Ly = [etndt
0
Lets>0andsetst=x, then

T xY dx 107
L(t") = e‘x(—j — =——|e7x"dx
J s) s s™ J

i | e x"dx ; i
The integral is called gamma function of (n+1) denoted by I"(n +1) . Thus
0
I'(n+1)

n+1

L(t) =~

In particular, if n is a non-negative integer then ['(n+1)=n!. Hence

n!
Sn+1

L(t") =

and so

4 1 t" t"
gl = r(n+1) or "y asthe case may be

Application of shifting property:-

The shifting property is
If L f(t) = F(s), then L [e™f(t)] = F(s-a)

Application of this property leads to the following results :
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. L(e*coshbt) = [(coshbt) ., = s

Thus,

L(e*coshbt) = %
(s—a)*-b

and

L_l( s;za o2 = e™ cosh bt
s—a)? -

: a
L(e*sinhbt)= ——
2. L( ) o

and

i1

: ——— =e"sinh bt
(s—a)”-b

s—a
(s—a)’ +b?

5 L(e*cosht) =

and

Lt S—a

—— =e* cosht
(s—a) +b

b

L(e? sin bt) =
4. L( ) A

and
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L 1 _ e*sinbt
(s—a)® —b? b
0 I'(n+1) n!
5. L(eatt )= (s— a)n+1 or (s—a) n+1  as the case may be
Hence
L—l 1 _ eattn n!

(s—a) n+1 T'(n+1) or (s— a)n+1 as the case may be
Examples :-
1. Find L[f(t)] given f(t)= t, P<t<3
4, t>3

Here
0 3 "
i) [e7 f(Odt = fetdt+ [4e~dt
0 0 3

Integrating the terms on the RHS, we get

1 4 1 _as
L[f(t)]:ge 3 +S_2(1_e )

This is the desired result.

2. Find L[f(t)] given L[f(t)] = sin2t, 0<t<m
0 t>n

Here

= Je T FOdt+ e f)dt e sin 2tdt
0 T 0
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V4

—st
:{f %ssinZt—ZcosZti _ 2 I_e_ﬂs:

s“+4 0

This is the desired result.

3. Evaluate: (i) L(sin3t sin4t)
(i) L(cos’ 4t)
(iii) L(sin%2t)

(i) Here L(sin3t sindt) = L [%(cost —Ccos7t)]

=1 L (cost) — L(cos7t) , by using linearity property

I\J

[ } 24s
211 s2+49] (s? +1)(s? +49)

(i1) Here

L(cos?4t) = L[l @+ cos8t)} :1[1+ ~ S }
2 2ls s°+64

(iii) We have
=3 1 - - -~
sin“@ = 2 €sin 9 —sin360 _
For 6=2t, we get
=3 1 - - =~
sin® 2t = 2 €sin 2t —sin 6t _

so that

L(sin®2t) = i[

6 6 }_ 48
41 s> +4 s*+36

(s? +4)(s +36)

This is the desired result.
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4. Find L(cost cos2t cos3t)
Here cos2t cos3t = %[cosSt + cost]
so that

1
cost cos2t cos3t = > [cos5t cost +cos” t]

[cos 6t + cos 4t +1+ cos 2t]

N|F

Thus L(ccstcosZtcoth):1 23 + 25 +1+ ZS
4/s°4+36 s°+16 s s°+4

5. Find L(cosh?2t)
We have

cosh? 6 — 1+ cosh 26

For 6 = 2t, we get
1+ cosh 4t

cosh? 2t =

Thus,

L(cosh22t):£[1+ > }
2|s s

6. Evaluate (i) L(Vt) (i) L(%j (iii) L(t*%)

I'(n+1)

n+1

We have L(t") =

(i) For n= % we get
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1
r+1
L(tl/2) — S23/2
Since I'(n+1) =nI'(n), we have F(l +1) = lr(lj = ﬁ
2 2 \2 2
Thus, L(Vt)= LZ
254

(i) Forn = % we get

)

S

N

by

Lt 2) =

NS

(iii) Forn = g , We get

1
L(t2) = }/2 =‘2_*f=_2\/7zs
s /2 s /2

7. Evaluate: (i) L(t®) (i) L(t)
We have,

n!
Sn+1

L (t") =

(i) For n =2, we get

|
L@)=2=2

S S

(i) For n=3, we get

31 6
P

L (t%) =
8. Find L [e™ (2cos5t — 3sin5t)]
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2L (€™ cos5t) — 3L(e™ sin5t)

., €+3C 15
(s+3)°+25 (s+3)°+25

, by using shifting property

_ 259 TP I
ey on simplification

9. Find L [coshat sinhat]

at +e—at\_
Here L [coshatsinat] = L TSII’\ at

1 a N a
2| (s—a)*+a® (s+a)’+a’

2 2
= a(s +2a’) , on simplification
[(s—a)* +a’][(s+a)* +a’]

10. Find L (cosht sin® 2t)

Given

[rirpeuscas)

= % I L € sin 2t :— L(e'sin 6t) +3L(e™" sin 2t) — L(e™" sin 6t):

i e e . 8 6
8| (s-1D)*+4 (s-1)°+36 (s+1)°+4 (s+1)°+36

] I S S S
4 (s-1°+4 (s-1*+36 (s+1)*+24 (s+1)°+36
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_5
11. Find L(e™*t 4)
We have

I'(n+1)

n+1
S

Put n=-5/2. Hence

L(t") =

I(-3/2) 4z

52y
L(t )_ 373/2 _3573/2

Change s to s+4.

N

L e—4tt—5/2 —
Therefore, ( ) —3(S+4)_3/2

Transform of t" f(t)

Here we suppose that nis a positive integer. By definition, we have
" —st
F(s) = je f (t)dt
0

Differentiating ‘n’ times on both sides w.r.t. s, we get

dn an @0
F(s) = e ' f (t)dt
ds” ) 83”-[ ®

0

Performing differentiation under the integral sign, we get

dn °0 n ,—st
"~ F(s)= 0j(—t) e f (t)dt

Multiplying on both sides by (-1)", we get

dn Ny n —S n
Lo F(9)= (" T (D™ dt=L[t" f ()], by definition
0

(D"

Thus,

dn

L IPf0)= (D" =

F(s)

This is the transform of t" f (t).
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Also,

L‘{ a’ F(s)} =(=D"t"f(t)
ds"

In particular, we have

L[t F(1)] = _% F(s), forn=1
L[tzf(t)]ng(s), for n=2, etc.

Also, L‘{d— F(s)} =-tf(t) and
ds

L—l[d—zz F(s)} =t*f (t)
ds

Transform of @

We have, F(s) = J‘e*st f (t)dt
0

Therefore,

o0

Of F(s)ds = | ﬁe‘“ f (t)dt}ds
S S10
= f].f (t)ﬁe‘“ds}dt
- [f (t){et} dt
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Thus, L(@j = O]F (s)ds

This is the transform of —~2

f ()
t

Al L-1?F(s)ds=¥

Examples :
1. Find L [te™ sin4t]

4

We h L[e 'sin 4t] = ————
e have, L | (s+1)%+16

So that,

d 1
L [te'sindt] = 4 - —4———
Lte” sindt] [ ds{sz+25+17H

8(s+1)
(s? +2s+17)?

2. Find L (% sin3t)

We have L (sin3t) = 23
s°+9
So that,
d? 3
L (£ sin3t) = —

( ) ds® [sz +9)
__gd_ s
ds (s* +9)°

_18(s* -3)

(s* +9)°
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3. Find L(e S'”tj
We have
L(e"sint) =;2
(s+D° +1

e'sint)_ ¢ ds o e
Hence L| = =pn (s+1
( t J 5[(5 +1)% +1 Ia (s+D

= %—tanfl(s +1) =cot *(s+1)

4. Find L(SltﬂJ . Using this, evaluate L[Sm atj

We have L (sint) = —
s°+1

sint Tds oL T
Sothat L [f (t)] = L(T) = Jsz+1_ bnts?

—tants=cot™ s =F(s)

NN

Consider

L(sm at] . L(sm atj _alf (at)
t at

a

= cotl(i)
a

1
= a[— F[gﬂ , In view of the change of scale property
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& Fing L[cosat—cosbt}

S S

We have L [cosat — cosbt] = —
[ ] +a® s*+b’

SZ

cosat — cosht U]‘ S S }d
So that Ll ——mMmM8 | = - S
[ t } isz +a® s’ +b?

_ 1 s?+a’)|
R T i

1] s’ +a? s’ +a?
=—| Ltlo —lo
2| (2+b2] g[sz+bzﬂ
1] s? +b?
:_0+Iog(Sz Zﬂ
i +a

B llog s? +b?
2 s’ +a’

6. Prove that Ie‘“tsin tdt=">
] 50

We have
e~tsintdt = L(tsint) = —9 | (sint :_i[ 1 }
J ( ) ds sint) ds|s*+1
__ 2
(s? +1)?

Putting s = 3 in this result, we get
J‘e““tsin tdt = =
: 50

This is the result as required.
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Consider

L= e fr(t)dt
0

_ I—st f(t), — J'(—s)e‘St f (t)dt , by using integration by parts
0

= ko (e f(t)— f(0) +sLf(t)

=0-f(0) + s L[f()]
Thus
L f'(t) =s LIf(H)] - (0)
Similarly,

L f7(t) =s? L[f(t)] —s f(0) - f'(0)

In general, we have

LE"(t) = s"LF () = "2 £ (0) = s" 2 £(0) —......— £ "(0)

t
Transform of _[f(t)dt
0
Leto (= [F@®)dt. Then ¢(0)=0 and ¢ (1) = (1)
0

Now, L ¢(t)= Ie_“qﬁ(t)dt
0

S o

- {¢(t) ° } - [0S
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17 s
:m—m+—ﬁam dt
S 0

Thus, L]HD&z%LHGﬂ

o, L SUFO1 = [0

Examples:

1. By using the Laplace transform of sinat, find the Laplace transforms of cosat.

a

s?+a?

Let f(t) =sinat, then Lf(t) =

We note that
f'(t) =acosat
Taking Laplace transforms, we get

Lf'(t) = L(acosat) = aL(cosat)

or L(cosat) = iLf '(t) :i bt - £(0).

Thus

L(cosat) =

2 2

S +a

This is the desired result.

. t 1 1 1
2.Given L 2\/: =——, showthat L| — |=—
{ ,J s%? {H} Js

Let f(t) = Z\E, given L[f(t)] = %
T S
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2 1 1
Jr 2t At

Taking Laplace transforms, we get

LE'(t) = L{i}

We note that, f'(t) =

Jnt

Hence

L{%} = Lf'(t) = sLf (t) —  (0)

1 1
Thus L{ﬁ} = E

This is the result as required.

t
3 Find L ;(%btjdt

0

Here L[f()] = I_(cosat —cosbtj

t

t
1
Using the result L jf (Hdt = S Lf(t)
0

t
cosat —cosbt
We get, LI( jdt = %Io

t

0

t
4. Find L.fte‘t sin 4tdt
0
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o e 8(s+1)
L " sin4t =
Here k = (57 + 25 +17)°

8(s+1)
s(s® +2s+17)°

t
Thus L J.te‘t sin 4tdt =
0

Laplace Transform of a periodic function

Formula: Let f (t) be a periodic function of period T. Then

1T
Lf(t)=m_[e f (t)dt

0

Proof :By definition, we have

L= [ef(dt= e f(u)du
0 0

T (n+1)T

0

w (N+)T

> je f (u)du

n=0 nT

Letussetu=t+nT, then

w T
i = 2. [T (t+nT)dt
n=0t=0
Here

f(t+nT) = f(t), by periodic property

Hence

L= (") Tfest f ()t
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1 T
= {1 o ST }J.e f(t)dt, identifying the above series as a geometric series.
- 0

Thus L[f(t)]=[ 1 Tjeﬁf(t)dt

—sT
1-e™* J;
This is the desired result.

Examples:-
1. For the periodic function f(t) of period 4, defined by f(t) :{3t, 0<t<2

6, 2<t<4
find L [f(t)]
Here, period of f(t) =T =4
We have,

_Tjest f (t)dt

do

_ [ 1 T'e-st £ ()t

—4s |
1-e™* J;

L f(t) = {

1_ efST

1 2 4
- { [ate~dt + J‘Ge“dt}
1-e77|; 5
—st 2 2 —st —st 4
P H_H By L +6(e_j
1-e =S )|, o ~S =S ),
1 | 3€-e% 257
Tl-e® s?

31-e* —2se™®)
s’(l-e ™)
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3. A periodic function of period 2z is defined by

w
f(t)= [ Esinot, 0<t<Z
w

0, Z<i<%Z

w (4]

Ew
where E and o are positive constants. Show that L f(t) = (52 + WZ)(l— e_ﬂslw)

Sol: Here T= 2—”. Therefore
(0]

2z lw

1 s
L) = T swrar Je £ (t)at
0

1 zlo

- Ee‘“ sin otdt
- -s(2zlw
1—e G/ !

zlw

E e—st
= | 77 assinet-wcosat
1-e $*+w

0

E o(e™'” +1)
- 1_e—s(27r/a)) SZ +C()2

Eol+e>'”)
= (1_e—57r/a))(1+e—57r/(0)(82 +Cl)2)

Ew
- (1_e757r/a))(82 +a)2)

This is the desired result.

3. A periodic function f(t) of period 2a, a>0 is defined by

f ()= [ E,0<t<a
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-E,a<t<?2a

show that L [f ()] = %tanhgj

2a
Sol: Here T =2a. Therefore L [f (t)] = 1_g2a je_St f (t)dt
0

1 aEe‘“dt+2a Ee*dt
= 1_e—2as 6’. aJ._

E

—sa\ —2as —as-
=ml—e (e -e™),

_ E k_ e—as
S(l_e—ZaS) A

B E(l_e—aS)Z
T s(l-e®)(1+e7)

E eas/2 _e—as/2
= ; easlz_i_e—aslz

= Etanh(ﬁ)
S 2

This is the result as desired.

Step Function:

In many Engineering applications, we deal with an important discontinuous function H
(t-a) defined as follows:

{O, t<a
H (t-a) = 1, t>a

where a is a non-negative constant.
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This function is known as the unit step function or the Heaviside function. The function is
named after the British electrical engineer Oliver Heaviside.The function is also denoted by
u (t-a). The graph of the function is shown below:

Note that the value of the function suddenly jumps from value zero to the value 1as t — a
from the left and retains the value 1 for all t>a. Hence the function H (t-a) is called the unit step

function.

In particular, when a=0, the function H(t-a) become H(t), where

H(t) = 1,t>0

Transform of step function

By definition, we have L [H(t-a)] = J-e_St H(t —a)dt
0

]e‘“ Odt + wje‘“ (D)dt
0 a

—as

D

In particular, we have L H(t) = 1
s

e—as
-1

Al L
e

} =H(t-a) g Ll(%) =H()

Unit step function (Heaviside function)

Statement: - L [f (t-a) H (t-a)] = ™ Lf(t)

Proof: - We have
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L [f(t-a) H(t-a)] = Oj'f (t—a)H (t—a)edt

= [ef(t-a)t

a

Setting t-a =u, we get

L[f(t-a) H(t-a)] = & f (u)du
0

= e L [f(t)]
This is the desired shift theorem.
Also, L' [e®™ Lf(t)] = f(t-a) H(t-a)
Examples:
1. Find L [e"? + sin(t-2)] H(t-2)
Sol: Let  f(t-2) = [e" + sin (t-2)]
Then f (t) = [e' + sint]

so that L f(t) = L+ 21
s-1 s“+1

By Heaviside shift theorem, we have

L[f(t-2) H(t-2)] = e Lf(t)

Thus,

L[e“‘z)+sin(t—2)]H(t—2)=e‘2{—l + 21 }
s-1 s“+1

2. Find L (3t +2t +3) H(t-1)
Sol: Let f(t-1) = 3t* +2t +3
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so that
f () = 3(t+1)* +2(t+1) +3 = 3t> +8t +8

Hence
6 8 8
L[f(t)]:—3+—2+—
S S S

Thus
L [3t? +2t +3] H(t-1) = L[f(t-1) H(t-1)]

= e L [f()]
_e_s|:£+§+§j‘
- s s? s

3.Find Le" H (t-2)
Sol: Letf (t-2) =e', sothat, f(t)=e?

-2

Thus, L [f(t)] = Se+1

By shift theorem, we have

L[f(t—2)H (t—2)]=e 2=Lf(t) = e::”

Thus

-2(s+1)

s+1

f]_(t), t<a
4. Letf (t) = {fg(t), t>a

Verify that f(t) = f1(t) + [f2(t) - f()]H(t-a)

LftH-2) =

Sol: Consider
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0, t<a

fa(t) + [F2(t) - F(O)]H(t-a) = { M+ f(O-f(), t>a

= [f,(t), t>a
fi(t), t<a =f(t), given

Thus the required result is verified.

5. Express the following functions in terms of unit step function and hence find their
Laplace transforms.

1. f(t)= , 1<t<2
4, t>2
Sol: Here, f(t) = t? + (4t-t%) H(t-2)
Hence, L f(t) = S%-F L(4t—t*)H(t-2) (i)

Let ¢ (t-2) = 4t —t?

sothat ¢(t) = 4(t+2) — (t+2)? = -t* + 4
Now, L[g(t)] = - % + 4

s° s
Expression (i) reads as

L f(t) = S%+|_|s(t—2)H(t—2):

2 -2

—3+e-25(ﬂ—3j
s s s°

This is the desired result
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3. Find Laplace transform of { f()= cost, O0<t<n
sint, t>n
Sol: Here f(t) = cost + (sint-cost)H(t-7)

S

Hence, L[ f(t)] = ;2
+

1+ L(sint—cost)H(t—7=)  (ii)

Let ¢ (t-m) = sint — cost
Then ¢(t) = sin(t + t) — cos(t + ©) = -sint + cost

1 S
+

so that L[ ¢(t)] = -
Lo(®] s?+1 s?+1

Expression (ii) reads as L [f(D)] = > 1 +L l&(t —m)H(t —71'):

SZ

S +e "Lg(t)

S +e"’{ s—l}
s?+1 s?+1
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UNIT IMPULSE FUNCTION

Definition: The unit impulse function denoted by & (1 — a) is defined as follows

bit-a) = limd,(t—a), az0 RN
E—+[
0, if t<a
[
Where B,(t-a)= {7, i a<i<a+e A(2)
|0, i it=a+te
The graph of the function EEU —a) 1s as shown below:
4 6 (t-a)
LN B
€
0 ae a+e
Fig. 7.2

Laplace transform of the unit impulse function

w0

[ e 8, (t—a)dt

0

Consider L {3, (t-a)}

a+e

o a[e"" (0) dt + [ e'“;ldH- ]‘e"" (0) dt

0 a a+te

Taking the limits on both sides as &€ — 0, we get,

) l— -£5
lim L{SL. -I,!—a)} . Iim[ = }
e—0 £S

ie., L{d(t-a)}
If a

I

LY
&
8

(Using L’ Hospital Rule)

OthenL{d(n)} =1
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1. Find the Laplace transforms of the following functions:
(1) (2 =1 uir-2)

Solution
(1) Now -1=2(t-2)+3
~. Using Heaviside shift theorem, we get
L2t =1 uir=2)} LIR2G-2+3]u(t-2)}
= ¢ L {2+ 3) Replacing 1 — 2 by ¢
= e {2 L1+ L(3))

1

!. :

[

25 |
[

L&

= & +

(=]

|-1|'.,u

(2) Fuit-3

Solution: ! = =3 +31

t—3°F+6(t-3)+9
Lil(t—3"+6(—3)+9]uit—3)}

Then LA{F uit—3))
Replacing t — 3 by ¢

= e LI + 61 + 9]
Using Heaviside shift theorem

= e LAY+ 6 LIN+9L (1))

i~ § !

3 e
= £ T':—3+—.|+—}'
|57 52 5]

; Find L[EEr: — 1)+ 38(e =20+ 45(r + _?j]-
Solution. We have

= A0 -1+3L8U-2)+4L6(t+3)
= et + e T 4 47, Since L&{f—a)=¢e™

Find L [cos h 3t &(i=2)].

Solution

cosh3t8(1-2) = —|e" +e}8(r-2)

| —
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Llcosh3t8(t-2)] = %{L[e“ 8(r—2)]+ L[ 8 (-2

= shiffing s-3 s
5+3—s
%[L[ﬁ[r o] -]

|' Wi 25 | el I
— e~ +e™
2 Il‘ Tx—s5-3 l :I qr
2 J

—2x

E ] 3 3
—1ef +f'f}
20

Llcosh3t&{t—2)] = cosh6e ¥

The Inverse Laplace Transforms

Introduction:

15MAT21

Let L [f (t)]= F(s). Then f(t) is defined as the inverse Laplace transform of F(s) and is

denoted by L™ F(s). Thus L™ [F(s)] = f (t).
Linearity Property

Let L™ [F(s)] = f(t) and L™ [G(s) = g(t)] and a and b be any two constants. Then
L™ [aF(s) + b G(s)] =a L™ [F(s)] + b L[G(s)]

Table of Inverse Laplace Transforms

F(s) f(t) = LF(s)
£,5>0 !
S
at

——,s>a e
s—a

S Cos at

,$>0

s? +a?
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1 Sin at
5 2,S>O
s“+a a
: 2,s>|a| Sin h at
s‘—a a
.S >|al
2 2
s°—a
Cos h at
n+l’S>0 ﬂ
S n!
n=0,1,23,..
n+1'S>O tn
S rg+1
n>-1

Example
1. Find the inverse Laplace transforms of the following:
L1 ... S+b ... 2s-5 4s-9
)—— (ii ii +
()25—5 ()52+a2( )4sz+25 952
Here

. 4 2s-5 4s-87 2, S—% 4 S—%
(i) L . + == —4L —
4s*+25 9-s’| 4 |, 25 s? -
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=1 cosi—sinE —4| cos h3t—§sin h3t
2 2 2 2

Evaluation of L™ F(s — a)

We have, if L [f(t)] = F(s), then L[e* f(t)] = F(s—a), and so
LY [F(s—a)]=e*f(t) =e® L™ [F(s)]

Examples

1.Evaluate: L™ 3S—+i
€+1°

Given = L* B‘Ll\frl =3L" 1\3 -2L" 1\4
€+1° €+1° €+1°

4,4l 1 &oal 1
=3etL[S—3—ZetL 5—4

Using the formula

n+l

Ll[ 1 }:t—l and takingn=2 and 3, we get
n!

S
—t42 —t43
Given:se t e t
2 3
2.Eva|uate:L‘1[ 23+2 }
§°-25+5
Given — |_'l i — |_’1 ‘;}3
€-1°+4 €-1°+4

] S T S
€¢€-1°+4 €¢-1°+4
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—¢! L‘{ > }+3e‘ L‘{ 1 }
s +4 s°+4

—e' cos 2t +§ elsin 2t

3.Evaluate :L‘l[ 225+1 }
s°+3s+1
3D 3
) +- -1 + = 1
Given =2L" —‘ =2 |=2/L" o -

> 4 2> /| 4 > £/
‘+;/_% ‘+;/_% ‘+gz_54

=2 2 [cosh2t—sin h212t
2 2

= J5. 2 J5
J5

2
4. Evaluate : L‘l[w}

s®+s%-2s
we have

2s? +55—4  2s® +55-4
s+s?-2s s€’+s-2
_ 2s?+55-4
Cs€+2 §-1.

A B C

= —4——
s s+2 s-1

Then 25°+5s-4 = A(s+2) (s-1) + Bs (s-1) + Cs (5+2)

Fors=0,wegetA=2,fors=1, wegetC=1andfors=-2, we get B=-1. Using these values
in (1), we get
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2s*+55-4 2 1 1
$®ys?-2s s s+2 s-1
Hence

2 —
L_1{2'25+—2552:} =2—¢ % +¢!
s?+s2—

5.Evaluate: L™ is+5
€+1°+€+2 ]

Let us take

4s+5 A B C

€+1°+6€+2 . €+1° Torl 542
Then 4s+5=A(s+2)+B(s+1) (s+2)+C(s+1)°
Fors=-1,wegetA=1, fors=-2,wegetC=-3
Comparing the coefficients of s?, we get B + C = 0, so that B = 3. Using these values in

4s+5 1 3 3

~ + ~
(1), we get €r1°+€+2  €+1° €+1_ s+2

‘ +1/ + ‘ + 2/ S S S

-2t

—te'+3e -3¢

3
6. Evaluate:L‘l[ 45 4}
s‘—a

s __A B GCs+D
let s*—a* s—-a s+a s?+3a?

@

Hence s° = A(s + a) (s + a?) + B (s-a)(s*+a”)+(Cs + D) (s* — a%)

For s = a, we get A = ¥4; for s = -a, we get B = ¥%4; comparing the constant terms, we get
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D = a(A-B) = 0; comparing the coefficients of s°, we get

1=A+B+CandsoC =% Using these values in (1), we get

$ 171 171 s
s*_a* 4|s—-a s+a| 2s?2+a?

Taking inverse transforms, we get

3 —

S 1 1

L == #4* +e™® +=cos at
L“—a“} 4l -2

:; fos hat +cos at_

7. Evaluate ;L™ [%}
s"+s°+1

S _ S _1{ 2s J
4 2 - 2 A 2 N~— 2 >
Consider $ +S *1 ¢ +S+1)L‘ -s+1, 2 ¢ +S+1} -s+1

_(2+s+1:— (2—s+1%

| s+ € -5+l

1
2

[

N |

) 11
_(2—s+1: € +s+1

N |-

Therefore

s 1| ot 1 t 1
L ———|=2|e? L ———|-e 2L*
[s4+32+1} 2 3
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1| L sin ﬁt _1,8in ﬁt
—Zle2 —2 _e2 2
|* s s
2 2
- Zsin ﬁgtsmr{lj
NEI 2

Evaluation of L} [e® F (s)]

We have, if L [f ()] = F(s), then L[f(t-a) H(t-a) = e™® F(s), and so

L [e™ F(s)] = f(t-a) H(t-a)

Examples

(1)Evaluate : L{ ° }

~4
¢-2°
Here
1
a=5 F(s)=
) ¢-2"
2t43
Therefore f(t):L‘lF(s)zL‘l#‘*:eZtL‘li4 _et
€-2" S 6
Thus
S ) HE-a)
L = -a -a
¢-2°
2¢-5_¢ 3
_e ;3( 5/H(—5:

L e e ?m
2) Evaluate: L™ +
@) LZ +1 s?+ 4}
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Given= fl(—ﬂ':H (—72':+ fz(—Zﬂ}I (—272':

Here f(t)=L"

s?+1

S
f,(t)=L" = c0s 2t
0 s?+4

Now relation (1) reads as
Given = sin€-7 H -7 »cos2€-27 Hq-27_
=—cost H {7 rcos @ Hq-27

Inverse transform of logarithmic functions

We have, if Lf(t)=F(s), then L |f = _% F¢

L (—i F cj =tf (t)
Hence ds

Examples:

(1) Evaluate: L* Iog(ﬂ)
s+b

Let F(s) = Iog(ﬂj —log€+a -log€+b_
s+b -

o
ds s+a Ss+b

d _
Sothat L*|-—F _ _ gt
[ ds ‘j l _

Then —

or tfq=e™-e™

—bt —at
Thus = %
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(2) Evaluate L™ tan‘l(EJ
s

Let F(s) = tan 1(%)

d ~ a
Then ——F € =
ds ~ [sz+a2}
or L‘l[—tijzsin at sothat
ds
or tfq=sinat
f(} sin at
a
Fs
Inverse transform of | ——
S

| 1
(1) Evaluate: L { 5 Zﬂ

s +a
Sol: Letusdenote F s =— 1 > so that
s“+a
fy=L'F s —ona
Then iz + _nF S =tj5i” a it
s s°+a’ s J a
1-cos at
T
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Convolution Theorem:

If LYF) = fin and LYG(s)} = gln)

then LYF(s) G(s)} = J:f () gt — ) due A1)

Proof. Since L'"Fis) = f( and L '{G(s)) = g(n)

we have Fis) = L{fin} = _[: e ff)dr
and G(s) = Lig) = [ e glr)dr
To prove (1), it is sufficient to prove that
i r ) ) '’
L{L}‘ (u) glt —u)du; = Fis) Gis) A2
CD;IEidE.‘.r J

. . = - .
L{L Flu)glt —u)dul — L e {Jﬂf () g(t —u) du} dt

e i
_:r
Jr:n J“ » SFlu) gt —u)dudt A3}

U $U

Fig. 8.1 Fig. 8.2

The domain of integration for the above double integral is from u = O to w = tand 1 = 0 1o
t = = which is as shown in Fig. 8.1.

The double integral given in the R.H.S. of equation (3) indicates that we integrate first parallel
to w-axis and then parallel o f-axis.

We shall now change the order of integration parallel to f-axis the limits being f = w to { = ==
and parallel to w-axis the limits being u = 0 to u = ==

. From equation (3), we get

! | T R ; —sf ] :
LEJ:H"'E“_"M",' = L f[ur-'i,l:f gt mdrf du

= [ fwe [T e gt —u) e du
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Substitute § — & = v s0 that df = dv

when f = . v = 0, and when { = o=, ¥ = o=

i !

L4 J;f (u) gt —u)du; = J:f () =™ § J: e g(v)dvdu

L

= [ flu)e™ G(s)du
Jo

- r:[s';_[: e F(u) du
= Gis)- F(s)

LV F(s) Gis)) = _Ef () gt — ) du

This completes the proof of the theorem.

Using Convolution theorem find the inverse laplace transforms

N I
() ==
5 (s+1)
Solution
1 1
(i) Let Fs) = - 7 Gisl= =3
(s+1)° e
Ao
Then LY Fis)} = L7 =t e ' = (1) (say)

|'j+|:|2i
'S I L
LGy = L ‘o == say

Then by Convolution theorem, we have

LVIF () Gl E}‘[n}lg[r—u}ldu

()

Ly
i;z (5 + I:Ili

I
L we ' —u)du

f
_[ (ut —u’) e du
0" .
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(2) Evaluate: L™ [;]

s? s+a’
. 1
Solution: we have L™ ~=e "t
s+a
t
Hence L* ~= |t dt
S s+a
1 . . .
=—2[1—e 1+at ] on integration by parts.
a

Using this, we get

= [at 1+e™ +2 e‘a‘—l}

Inverse transform of F(s) by using convolution theorem:
We have, if L(t) = F(s) and Lg(t) = G(s), then

L [® = g(t) JLF(t)-Lg(t) =F(s) G(s) and so

L' EG)GE) M+ = [f Cud@

This expression is called the convolution theorem for inverse Laplace transform
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Examples

Employ convolution theorem to evaluate the following:

A 1
L {G+a}+bj
1

Sol:Let us denote F(s) = i, G(s)=—
s+a s+b

Taking the inverse, we get  f(t)=e™, g(t)=e™

Therefore, by convolution theorem,

-1 1 ' -at-u .—bhu —at a-bu
L { } = je e'du =e je du
0

s+a s+b ;
:e_at ea—bt_l
a-b
e—bt_e—at
~a-b
1 S
@)L Cra®
+a°
Sol: Let us denote F(s) = 21 =, G(s) = 23 > Then
s*+a s*+a

sin at
a

f(t) =

,g(t)=cos at
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Hence by convolution theorem,

4 S el
L 7= [=sina t-u cosaudu

s?+a’ o a

1 'esin at+sin at-—_2au

= '[ 5 du, by using compound angle formula
0
1 . cos at—2au | tsin at
=—/|usinat- =
2a —2a . 2a
S
YLt ————
) ¢-1% +1
Sol:
1 S
F(s)=——,G(s) =
©) s—1 ®) s?+1
Therefore

f(t) = e, g(t) = sint

By convolution theorem, we have

1 ) g™ )
Lt = le"™sinudu =¢' sin u—cos u
‘_1]2 +1/ J. |: 2 (_ i

t

0

f —sint—cost_

N

t —
= % l‘t ¢sint-cost - €1 =
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LAPLACE TRANSFORM METHOD FOR DIFFERENTIAL EQUATIONS

As noted earlier, Laplace transform technique is employed to solve initial-value
problems. The solution of such a problem is obtained by using the Laplace Transform of the
derivatives of function and then the inverse Laplace Transform.

The following are the expressions for the derivatives derived earlier.

L[F(©)] =s Lf()-f(0)
L[F(t) =s? Lf(t)-sf(o)-f(0)

Lf"(t) =s° L (t) -s2 f(0) - s f (0) - £'(0)

' _ -t _
1. Solve by using Laplace transform method ¥ TY=1€". ¥(0)=2
Sol: Taking the Laplace transform of the given equation, we get

~ ~ ~ 1
L (/_ 6/+L </=
LyCye Ly “r
G 1lyCG2=— "

- €+1°

so that

~ 2s?+4s+3
Ly =——

€+ 12
Taking the inverse Laplace transform, we get

B 2s?+4s+3

Y=
€+1°

=Lt

(2€+1-12+4€+1-1%3
6+1j

B
| s+1 Q+1j

1 _ ~
=Eet(2+4/
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This is the solution of the given equation.
2. Solve by using Laplace transform method:
y"+2y'-3y=sint, y(o)=y'(0)=0
Sol: Taking the Laplace transform of the given equation, we get

1
s?+1

Iy -sy©@ -y +2 Ly - y©) =3 L y(t) =

Using the given conditions, we get

1
s?+1

Lyt)J?+2s-3 =

or

1
Ly)= ¢-1%+3 % +l:

or

a 1
yo =L {6—1}+3}2 +1J

A B CS+D:|
+ +
|s-1 s+3 s°+1

= L7

I _s 1
1111+1o5

=LY = -
8 s—1 40 s+3 s?+1

by using the method of partial sums,

—let —ie‘3t L Cost+2sint
10

8 40

This is the required solution of the given equation.
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3) Employ Laplace Transform method to solve the integral equation.
t
f(t) =1+ [ f € 3in (~u Qu
0
Sol: Taking Laplace transform of the given equation, we get

t
L =2+L[f usin t-u du
S 0
By using convolution theorem, here, we get
1 L)

Lf(t):l+Lf(t)-Lsint=—+ >
S S s°+1

Thus

2 2 2
Lf(t)=553+1 or f(t):L‘{SS;r j=1+%

This is the solution of the given integral equation.

2
(4) A particle is moving along a path satisfying, the equation (:jTZ(-‘_ 6(3—): +25x =0 where

x denotes the displacement of the particle at time t. If the initial position of the particle is at x = 20
and the initial speed is 10, find the displacement of the particle at any time t using Laplace transforms.
Sol: Given equation may be rewritten as

X"(t) + 6x'(t) + 25x(t) =0

Here the initial conditions are x(0) = 20, x'(0) = 10.
Taking the Laplace transform of the equation, we get
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L, (t)s*+65+25]-20s-130=0 or

20s +130

L ()= 222
2 s +65+25

so that

X(0) = L 20s+130
$S+3 2+16

o 20€+3 370
+3°+
€+3°+16

_ooLY St g0y 1
€+3°+16 €+3°+16
% sin 4t

—20e % cosdt+35 -

This is the desired solution of the given problem.

(5) A voltage Ee™ is applied at t = 0 toa circuit of inductance L and resistance R. Show that the

Rt
E lew_gt
R-alL

Sol: The circuit is an LR circuit. The differential equation with respect to the circuit is

current at any time tis

di | .
L—+Ri=E(t
il (t)

Here L denotes the inductance, i denotes current at any time t and E(t) denotes the E.M.F.

It is given that E(t) = E e™®. With this, we have
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Thus, we have

Lﬂ +Ri=Ee™® or
dt

Li'(t) +Ri(t) = Ee™

L O3 RE TO=EL € or
Taking Laplace transform (L; ) on both sides, we get

. s N 1
LEL i0-i0+RE 10 =E—

Since i(0) =o, weget L i(t)jJL+R = B o
~ s+a

. E
L. i(t) = <
T 1 €+a > €L+R
Taking inverse transform L, weget i(t) = L' B
(s+a)(sL+R)

__E L L -L L 1
R-aL S+a sL+R

Thus

Rt
; E -—
i(t) = edt_pg L
® R—aL[ }

This is the result as desired.

(6) Solve the simultaneous equations for x and y in terms of t given (31_): +4y =0,

2—): —9x = 0 with x(0) =2, y(0) =1.

Sol: Taking Laplace transforms of the given equations, we get
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[Lx®) - x(0) +4Ly(t)=0
~9Lx(t)+ fLy®) - y(0) =0
Using the given initial conditions, we get

sLx(t)+4Ly()=2
—9Lx(t)+5Ly(t)=1

Solving these equations for Ly(t), we get

s+18

Lyt) = 27—
v s +36

so that

o = 1Y 2

+
s>+36 s?>+36

=Cos 6t + 3sin 6t 1)

Using this in 3—3{ —9x =0, we get

X(t) =% | 6sin 6t +18 cos 6t _
or

X(t) = 2 § cos 6t —sin 6t
3 )

(1) and (2) together represents the solution of the given equation.

15MAT21
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