

Operation Research VTU CBCS Question Paper Set 2018

Ultimate Guide to Score High In VTU Exams eBook ₹39/-

Guide to Score High in ANY VTU EXAM eBOOK

Download Now

10AE837 USN

Eighth Semester B.E. Degree Examination, June/July 2015

Operation Research

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART -- A

Explain the scope of operation Research.

- A firm manufactures two types of products A and B and sells them on a profit of ₹ 2 on type A and ₹ 3 on type B, each product is processed on two machines G and H. Type A requires one minute of processing time on G and two minutes on H while type B requires one minute on G and one minute on H. The machine G is available for not more than 6 hour 40 minutes while machine H is available for 10 hours during any working day. Formulate the problem as a linear programming problem and obtain the solution using graphical method. (10 Marks)
- Solve the problem using simplex method

Maximize
$$Z = 2x_1 + 10x_2 + x_3$$

Subject to
$$5x_1 + 2x_2 + x_3 + x_1 \le 15$$

$$2x_1 + x_2 + 7x_3 + s_2 \le 20$$

$$x_1 + 3x_2 + 2x_3 + s_3 \le 25$$

$$x_{1,} x_{2,} x_{3} \ge 0.$$

Solve the following Linear Programming problem by dual - simplex method.

Maximize
$$Z = 2x_1 + x_3$$

Subject to
$$x_1 + x_2 - x_3 \ge 5$$

$$x_{1}-2x_{2}+4x_{3} \ge 8$$

$$x_{1}+3x_{1}+2x_{3}+s_{3} \le 25$$

$$x_{1}x_{2}, x_{3} \ge 0.$$

$$\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \ge 0$$

(10 Marks)

(10 Marks)

Find the intial basic feasible solution using Vogel's approximation method and then optimize by MODI method.

Origin

Destination									
	P	Q	R Supply						
A	5	7	8	70					
В	4	4	6	30					
C	3	7	7	50					
Demand	65	42	43	150					

(10 Marks)

Using the following cost matrix, determine the optimal job assignment and the cost of assignment. Jobs

		J	J ₂	Jз	J ₄	J ₅
	Α	10	3	3	2	8
	В	9	7	8	2	7
Person	C	7	5	6	2	4
	D	3	5	8	2	4
	Ε	9	10	9	6	10

(10 Marks)

4 a. Solve the following problem using Gomory's technique.

(12 Marks)

(08 Marks)

Maximize
$$Z = x_1 + 2x_2$$

Subject to
$$x_1 + 2x_2 \le 12$$

$$4x_1 + 3x_2 \le 14$$

$$x_1, x_2, x_3 \ge 0$$
 And are integers

b. Solve the following Zero – one integer programming problem.

Maximize
$$Z = 3x_1 + x_2 + 3x_3$$

Subject to
$$-x_1 + 2x_2 + x_3 \le 4$$

$$4x_1 - 3x_3 \le 2$$

$$x_1 - 3x_2 + 2x_3 \le 3$$

$$x_1, x_2, x_3 = (0,1)$$

PART - B

5 a. A project consists of a series or tasks labeled A, B, C, D, E, F, G, H, I with the following relationships (W < X, Y mean X and Y connot start until W is completed: X, Y < W means W cannot start until both X and Y are completed.) With this notation construct the network diagram having the following constraints.

$$A < D, E; B, D < F; C < G; B < H; F, G < L$$

Find also the optimum time of completions of the project, when the time (in days) of completion of each task is as follows:

		A 40 M	na d						
Task:	$\mathbf{A}_{r'}$	æ	U.	D	Е	F	G	Н	I
Time:	_23	-8	20	16	24	18	19	4	10

(14 Marks)

b. Explain the basic steps, involved in PERT/CPM techniques.

(06 Marks)

- 6 a. In a hair dressing saloon with one barber, the customer available follows Poisson distribution at an average rate of one every 45 minutes. The service time is exponentially distributed with a mean of 30 minutes. Find
 - i) Average number of customers in the saloon.
 - ii) Average waiting times of a customer before service.
 - iii) Average idle time of the barber.

(10 Marks)

- b. A super market has two sales girls brining up the sales at counters. If the service time for each customer is exponentially distributed with a mean of 4 minutes and the people arrive in Poisson distribution at counters at the rate of 10 per hour, determine all the measures of multiple server model.

 (10 Marks)
- a. What do you mean by zero sum game? Explain the characteristics of a game. (08 Marks)
 - b. Solve the following game with the pay off matrix

Player A
$$A_1 = \begin{bmatrix} B_1 & B_2 & B_3 & B_2 \\ A_1 & 1 & 7 & 3 & 4 \\ A_2 & 5 & 6 & 4 & 5 \\ A_3 & 7 & 2 & 0 & 3 \end{bmatrix}$$

(07 Marks)

c. What are the assumptions of a Two person zero sum game.

(05 Marks)

10AE837

8 a. Use graphical method to minimize te time needed to process. The following job on machines shown. Also calculate the total time needed to complete both the jobs.

Job I	Sequence of machines	Α	В	С	D	Е
	Time (hrs)	3	4	2	6	2
Job II	Sequence of machines	В	С	A	D	Е
	Time (hrs)	5	4	3	2	6

b. Determine the optimal sequence for the six jobs that minimizes the total elapsed time (in hrs). Also determine the idle time for each machine.

Job No.	1	2	3	4	5	6
Machine I	5	9	4	7	8	6
Machine II	7	4	8	3	9	5

(08 Marks)