

Flight Vehicle Design VTU CBCS Question Paper Set 2018

Ultimate Guide to Score High In VTU Exams eBook ₹39/-

> Guide to Score High in ANY VTU EXAM eBOOK

> > Download Now

Eighth Semester B.E. Degree Examination, June/July 2017 Flight Vehicle Design

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Enlist the ten performance parameter considered for designing an aircraft. (10 Marks)
 - b. Consider a typical military Bomber of L/D = 16 warm up and take off fuel fraction is 0.97. Climb fuel fraction is 0.985, cruise R = 1500 n m = 2778 km, C = 0.5/hr, V = 0.6M (same for both the cruise condition 1^{st} loiter E = 3 hrs, C = 0.4/hr 2^{nd} loiter E = 1/3 hrs. Landing fuel fraction is 0.995. Estimate take off to landing fuel fraction W_f/W_0 . From W_f/W_0 . Calculate the value of W_0 . (10 Marks)

- 2 a. Define the term 'Wing Loading'. Briefly explain the consideration for selection of $\frac{W}{S}$ for an aircraft under design process. (10 Marks)
 - b. Derive and explain:
 - i) Wing loading effect on range
 - ii) Effect of aspect ratio on aircraft performance.

(10 Marks)

(10 Marks)

- 3 a. Explain swap single selection criteria.
 - b. Show that for a straight, tapered wing, mean aerodynamic chord(MAC) is $\overline{C} = \frac{2}{3}C_r \left(\frac{\lambda^2 + \lambda + 1}{\lambda + 1}\right), \text{ where } \lambda \text{ taper ratio and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord and derive value for } \wedge_{x/C} \text{ and } C_v \text{ is root chord } C_v \text{ is root$

 $\wedge_{\text{C/4}}$. (10 Marks)

- 4 a. Show in a graph the variation of drag due to lift, zero lift drag and total drag with velocity.

 Also show how power required and power available in a piston engine propeller aircraft varies with velocity.

 (10 Marks)
 - b. Explain engine installed thrust correction.

(10 Marks)

PART – B

- 5 a. Write the equation of motion of landing roll and obtain an expression for landing ground roll distance. (10 Marks)
 - b. Explain three common approaches used for active lift enhancement, with the help of neat sketches. (10 Marks)

10AE81

6	a. b.	Explain contribution of fuselage using vertical stabilizer towards lateral stability. What are neutral point, c.g. margin and static margin?	(10 Marks) (10 Marks)
7	a. b.	Sketch and explain three commonly used landing gear arrangements. Explain anti-icing and de-icing systems in an aircraft.	(10 Marks) (10 Marks)
8	a. b.	Explain a typical flight control system. Write short note on: i) Radio navigation systems	(10 Marks)
		ii) Aircraft weapon systems.	(10 Marks)

* * * * *

USN 10AE81

Eighth Semester B.E. Degree Examination, June/July 2015

Flight Vehicle Design

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART -- A

1 a. Explain overview of airplane design process.

(08 Marks)

b. Calculate near exact weight for an airplane from a guess value for the following data, where We is the empty weight and Wo is the takeoff weight.

$$\frac{W_e}{W_o} = 0.97 W_o^{-0.05}$$
 and $W_o = \frac{10,500}{1 - 0.4 - \frac{W_e}{W_o}}$

(12 Marks)

- 2 Explain the effect of wing loading on stall speed, take off distance, catapult take off, landing distance, cruise, loitter for endurance, instantaneous turn and sustain turn. (20 Marks)
- 3 a. Explain the wing sweep angle selection criteria.

(10 Marks)

b. Draw layout of a spread sheet for wing desigh.

(10 Marks)

4 a. What are engine installed thrust correction?

(10 Marks)

b. A jet engine performance data is given below:

rpm = 9500

 $EGT = 450^{\circ}C$

w_f (fuel consumption) = 1880 Kg/hr

 $w_a = (air consumption) = 91 \text{ Kg/Sec}$

 F_n (net thrust) = 4510 Kg

TFSC (thrust specific fuel consumption) = 0.5

The test is carried out at pressure of 102.6 kPa and ambient temperature of 30° C. Correct the test data for ISA conditions (pressure 101.3 kPa and temperature 15° C) (10 Marks)

PART – B

5 a. What is balanced field length?

(06 Marks)

b. Draw spread sheet layout for take – off and landing distance.

(14 Marks)

6 a ≥ Explain rudder area sizing.

(12 Marks)

b. What is neutral point, e.g. margin and static margin?

(08 Marks)

7 a. Explain Alternating current electrical power system for an aircraft.

(10 Marks)

b. What is Castoring – wheel geometry?

(10 Marks)

8 a. Explain a typical flight control system.

(12 Marks)

b. Briefly describe weapon carriage and gun installation on military aircraft.

(08 Marks)

USN

Eighth Semester B.E. Degree Examination, June/July 2016 Flight Vehicle Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

Define Design. Briefly explain the design process of an aircraft with a flow chart. (10 Marks)

Mention the performance parameter for designing an aircraft.

(10 Marks)

- Derive an expression for wing loading effect on Glide rate. (10 Marks)
 - Define Load Factor. Show that the designer can minimize $\frac{D}{W}$ with respect to $\frac{W}{S}$

relation $\frac{W}{S} = \frac{q}{n} C_{\left(\frac{L}{D}\right)_{min}}$

(10 Marks)

- Write short notes on the following: 3
 - Airfoil shape selection

Base Drag Estimation.

(10 Marks)

- b. Mention and briefly explain the volume consideration mode while designing an aircraft (10 Marks) fuselage.
- Discuss the following topics in detail:
 - Propulsion selection
 - Propeller Design for cruise condition

(10 Marks)

Explain the spread shut approach for Turbo-Jet engine sizing.

(10 Marks)

PART - B

- Derive an expression for aircraft ground roll. (10 Marks)
 - Enlist all phases of flight landing with schematic sketch and mention all the expression (10 Marks) related to each phase.
 - Discuss briefly any two refined weight estimation methods used in aircraft. (10 Marks)
 - Explain longitudinal stability effect on performance of the aircraft. b.

(10 Marks)

- Sketch and explain three commonly used landing gear arrangements. (10 Marks) (10 Marks)
 - Explain anti icing and de-icing system in an aircraft.

(10 Marks)

- Explain a typical flight control system.
 - Write short notes on:
 - (i) Radio navigation system
 - (ii) Aircraft weapon system.

(10 Marks)