

Numerical Methods VTU CBCS Question Paper Set 2018

Ultimate Guide to Score High In VTU Exams eBook ₹39/-

> Guide to Score High in ANY VTU EXAM eBOOK

Download Now

USN 10AE661

Sixth Semester B.E. Degree Examination, June / July 2014 Numerical Methods

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain relative error, inherent error, round off error and trunction error, with an example.

 (10 Marks)
 - b. Obtain a second degree polynomial approximation to $f(x) = (1+x)^{\frac{1}{2}}$, $x \in [0, 0.1]$ using the Taylor series expansion about x = 0. Use the expansion to approximate f(0.05) and find a bound of the truncation error.
- 2 a. Solve the system of equation by, i) Gauss elimination method, ii) Gauss-Jordan method. x + 2y + z = 3, 2x + 3y + 3z = 10, 3x + y + 2z = 13 (10 Marks)
 - b. Solve the system of equation, x + 5y + z = 14, 2x + y + 3z = 13, 3x + y + 4z = 17

By LU decomposition method.

(10 Marks)

a. Use Lagrange's formula to fit a polynomial to the data:

X :	-1	0	2	3
y:	-8	3	1	12

and hence find y(x=1).

(06 Marks)

b. Use Newton's divided difference formula. Find the values of f(2), f(8) and f(15) given the following table: (06 Marks)

 x:
 4
 5
 7
 10
 11
 13

 f(x):
 48
 100
 294
 900
 1210
 2028

- 4 a. Find all eigen values of the matrix by Jacobi's method.

$$\begin{bmatrix} 1 & \sqrt{2} & 2\\ \sqrt{2} & 3 & \sqrt{2}\\ 2 & \sqrt{2} & 1 \end{bmatrix}$$

(07 Marks)

b. Find the numerially largest eigen values of $A = \begin{pmatrix} 25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4 \end{pmatrix}$ and the corresponding eigen

vector.

(06 Marks)

c. Using the householder's transformation, reduce the matrix $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ into a

tridiagonal matrix.

(07 Marks)

PART – B

5 a. Evaluate $I = \int_0^6 \frac{1}{1+x} dx$ using, i) Trapezoidal rule ii) Simpson's rule (both) iii) Weddle's rule. Check up direct integration. (10 Marks)

(TO Marks)

b. Use Gauss three-point formula and evaluate, $I = \int_{1}^{5} \frac{dz}{z}$.

(10 Marks)

6 a. From the data given below, find the number of students whose weight is between 60 and 70.
(10 Marks)

Weight in Ibs:	0 – 40	40 - 60	60 - 80	80 - 100	100 - 120
No. of students:	250	120	100	70	50

b. Fit a curve of the form $Y = ab^x$ to the data:

(10 Marks)

x :	1	2	3	4	5	6
y:	151	100	61	50	20	8

- 7 a. A real root of the equation, $f(x) = x^3 5x + 1 = 0$ lies in the interval (0, 1) perform four iteration of the secant method and the Regula-Falsi method. (10 Marks)
 - b. Use Newton Raphson method to derive an iterative formula to find \sqrt{N} and hence find $\sqrt{12}$.
- 8 a. Explain steepest descent method.

(10 Marks)

b. Expalin Quasi-Newton method.

(10 Marks)

* * * *