

Additional Mathematics-II VTU CBCS Question Paper Set 2018

Ultimate Guide to Score High In VTU Exams eBook ₹39/-

Guide to Score High in ANY VTU EXAM eBOOK

Download Now

Fourth Semester B.E. Degree Examination, Dec.2017/Jan.2018 Additional Mathematics – II

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

1 a. Find the rank of the matrix $A = \begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$ by applying elimentary row

transformations. (06 Marks)

- b. Solve the following system of equations by Gauss-elimination method: x+y+z=9, x-2y+3z=8 and 2x+y-z=3. (05 Marks)
- c. Find the inverse of the matrix $\begin{bmatrix} 5 & -2 \\ 3 & 1 \end{bmatrix}$ using Cayley-Hamilton theorem. (05 Marks)

2 a. Find the rank of the matrix $\begin{bmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{bmatrix}$ by reducing it to echelon form. (06 Marks)

- b. Solve the following system of equations by Gauss-elimination method: x+y+z=9, 2x-3y+4z=13 and 3x+4y+5z=40. (05 Marks)
- c. Find the eigen values of $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$. (05 Marks)

Module-2

- 3 a. Solve $(D^4 2D^3 + 5D^2 8D + 4)y = 0$. (05 Marks)
 - b. Solve $\frac{d^2y}{dx^2} 4y = \cosh(2x-1) + 3^x$. (05 Marks)
 - c. Solve by the method of variation of parameters $y'' + a^2y = \sec ax$. (06 Marks)

OR

4 a. Solve
$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 4\frac{dy}{dx} - 2y = e^x$$
. (05 Marks)

- b. Solve $(D^2 + 5D + 6)y = \sin x$. (05 Marks)
- c. Solve by the method of undetermined coefficients $y'' + 2y' + y = x^2 + 2x$ (06 Marks)

Module-3

- 5 a. Find the Laplace transform of cost.cos2t.cos3t. (06 Marks)
 - b. Find the Laplace transform $f(t) = \frac{Kt}{T}$, $0 < t < \pi$, f(t+T) = f(t). (05 Marks)

15MATDIP41

c. Express $f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \sin t, & t > \pi \end{cases}$ in terms of unit step function, and hence find L[f(t)]. (05 Marks)

Find the Laplace transform of (i) tcosat, (ii) $\frac{1-e^{-at}}{t}$. (06 Marks) 6

Find the Laplace transform of a periodic function a period 2a, given that
$$f(t) = \begin{cases} t, & 0 \le t < a \\ 2a - t, & a \le t < 2a \end{cases} f(t + 2a) = f(t).$$
 (05 Marks)

Express $f(t) = \begin{cases} 1, & 0 < t < 1 \\ t, & 1 < t \le 2 \\ t^2, & t > 2 \end{cases}$ in terms of unit step function and hence find its Laplace

(05 Marks) transform.

Find the inverse Laplace transform of (i) $\frac{(s+2)^3}{s^6}$, (ii) $\frac{s+5}{s^2-6s+13}$. (06 Marks)

Find inverse Laplace transform of $\log \left[\frac{s^2 + 4}{s(s+4)(s-4)} \right]$. (05 Marks)

c. Solve by using Laplace transforms $\frac{d^2y}{dt^2} + k^2y = 0$, given that y(0) = 2, y'(0) = 0. (05 Marks)

a. Find the inverse Laplace transform of $\frac{4s+5}{(s+1)^2(s+2)}$ (06 Marks)

Find the inverse Laplace transform of $\cot^{-1}\left(\frac{s+a}{h}\right)$.

Using Laplace transforms solve the differential equation $y'' + 4y' + 3y = e^{-t}$ with y(0) = 1. y'(0) = 1.

(05 Marks)

a. If A and B are any two events of S, which are not mutually exclusive then $P(A \cup B) = P(A) + P(B) - P(A \cap B).$

b. The probability that 3 students A, B, C, solve a problem are 1/2, 1/3, 1/4 respectively. If the problem is simultaneously assigned to all of them, what is the probability that the problem is

c. In a class 70% are boys and 30% are girls. 5% of boys, 3% of girls are irregular to the classes. What is the probability of a student selected at random is irregular to the classes and what is the probability that the irregular student is a girl? (06 Marks)

a. If A and B are independent events then prove that \overline{A} and \overline{B} are also independent events. (05 Marks)

b. State and prove Baye's theorem.

A Shooter can hit a target in 3 out of 4 shots and another shooter can hit the target in 2 out of 3 shoots. Find the probability that the target is being hit:

(i) when both of them try

(ii) by only one shooter.

(06 Marks)

(05 Marks)

CBCS Scheme

USN					T	
USN						

Fourth Semester B.E. Degree Examination, June/July 2017 Additional Mathematics – II

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Find the rank of the matrix:

b. Solve the following system of equations by Gauss elimination method:

$$2x + y + 4z = 12$$

$$4x + 11y - z = 33$$

 $8x - 3y + 2z = 20$.

c. Find all the eigen values and eigen vector corresponding to largest eigen value of the matrix:

OR

2 a. Solve the following system of equations by Gauss elimination method:

$$x + y + z = 9$$

$$2x + y - z = 0$$

$$2x + 5y + 7z = 52$$
.

(06 Marks)

b. Reduce the matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$$
 into its echelon form and hence find its rank. (05 Marks)

c. Find the inverse of the matrix
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$$
 using Cayley – Hamilton theorem. (05 Marks)

Module-2

a. Solve
$$(D^2 - 4D + 13)y = \cos 2x$$
 by the method of undetermined coefficients. (06 Marks)
b. Solve $(D^2 + 2D + 1)y = x^2 + 2x$. (05 Marks)
c. Solve $(D^2 - 6D + 25)y = \sin x$. (05 Marks)

OR

4 a. Solve
$$(D^2 + 1)y = \tan x$$
 by the method of variation of parameters. (06 Marks)
b. Solve $(D^3 + 8)y = x^4 + 2x + 1$. (05 Marks)
c. Solve $(D^2 + 2D + 5)y = e^{-x} \cos 2x$. (05 Marks)

15MATDIP41

Module-3

5 a. Find the Laplace transforms of:

i)
$$e^{-t}\cos^2 3t$$
 ii) $\frac{\cos 2t - \cos 3t}{t}$. (06 Marks)

b. Find:

i)
$$L\left[t^{-\frac{5}{2}} + t^{\frac{5}{2}}\right]$$
 ii) $L\left[\sin 5t \cdot \cos 2t\right]$. (05 Marks)

c. Find the Laplace transform of the function : $f(t) = E \sin(\frac{\pi t}{\omega})$, $0 < t < \omega$, given that $f(t+\omega)=f(t).$ (05 Marks)

OR

i)
$$L[t^2 \sin t]$$
 ii) $L[\frac{\sin 2t}{t}]$. (06 Marks)

b. Evaluate:
$$\int_{0}^{\infty} \frac{\cos 6t - \cos 4t}{t} dt \text{ using Laplace transform.}$$
 (05 Marks)

c. Express $f(t) = \begin{cases} \sin 2t, & 0 < t < \pi \\ 0, & t > \pi \end{cases}$, in terms of unit step function and hence find L[f(t)]. (05 Marks)

7 a. Solve the initial value problem $\frac{\text{Module-4}}{\text{dx}^2} + \frac{5\text{dy}}{\text{dx}} + 6\text{y} = 5\text{e}^{2\text{x}}$, y(0) = 2, y'(0) = 1 using Laplace transforms.

b. Find the inverse Laplace transforms: i)
$$\frac{3(s^2-1)^2}{2s^2}$$
 ii) $\frac{s+1}{s^2+6s+9}$. (05 Marks)

c. Find the inverse Laplace transform :
$$\log \left[\frac{s^2 + 4}{s(s+4)(s-4)} \right]$$
. (05 Marks)

OR

a. Solve the initial value problem:

$$\frac{d^2y}{dt^2} + \frac{4dy}{dt} + 3y = e^{-t} \text{ with } y(0) = 1 = y'(0) \text{ using Laplace transforms.}$$
 (06 Marks)

Find the inverse Laplace transform: i)
$$\frac{1}{s\sqrt{5}} + \frac{3}{s^2\sqrt{5}} - \frac{8}{\sqrt{5}}$$
 ii) $\frac{3s+1}{(s-1)(s^2+1)}$. (05 Marks)

c. Find the inverse Laplace transform :
$$\frac{2s-1}{s^2+4s+29}$$
. (05 Marks)

Download latest question papers and notes from VTU campus app on playstore

15MATDIP41

Module-5

9 a. State and prove Baye's theorem.

(06 Marks)

- b. A can hit a target 3 times in 5 shots, B 2 times in 5 shots and C 3 times in 4 shots. They fire a volley. What is the probability that i) two shots hit ii) atleast two shots hit? (05 Marks)
- c. Find P(A), P(B) and P(A \cap B), if A and B are events with P(A \cup B) = $\frac{7}{8}$,

$$P(A \cap B) = \frac{1}{4} \text{ and } P(\overline{A}) = \frac{5}{8}.$$
 (05 Marks)

OR

- 10 a. Prove that $P(A \cup B) = P(A) + (B) P(A \cap B)$, for any two events A and B. (06 Marks)
 - b. Show that the events \overline{A} and \overline{B} are independent, if A and B are independent events.

(05 Marks)

c. Three machines A, B and C produce respectively 60%, 30%, 10% of the total number of items of a factory. The percentage of defective output of these machines are respectively 2%, 3% and 4%. An item is selected at random and is found defective. Find the probability that the item was produced by machine C. (05 Marks)

* * * * *